PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Earth-based construction: a critical review

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Budownictwo ziemne. Krytyczny przegląd literatury
Języki publikacji
EN PL
Abstrakty
EN
This paper presents a critical review of the literature on selected earth-based construction technologies published between January 2020 and July 2022 and indexed in Scopus. Publications on rammed earth, mudbricks and earth sheltering were reviewed and key research areas were identified, including, but not limited to the performance of unstabilized and stabilized earth partitions, the application of various stabilization materials, including waste, plant fibre and cement, characteristics of heritage earth structures, seismic vulnerability, life cycle analysis (LSA), and hygrothermal properties. It was concluded that a greater overlap between these areas could enhance the state of the art on earth-based technologies. Very little interest in earth shelters was observed, as the literature focused primarily on rammed earth and mudbrick.
PL
Niniejszy artykuł przedstawia krytyczny przegląd literatury na temat wybranych technologii budowlanych opartych na ziemi opublikowanej między styczniem 2020 a lipcem 2022 roku, która została zaindeksowana w bazie Scopus. Zapoznano się z publikacjami dotyczącymi ziemi ubijanej w szalunkach, cegły suszonej i schronów ziemnych oraz zidentyfikowano kluczowe obszary badawcze, takie jak: efektywność stabilizowanych i niestabilizowanych przegród ziemnych, wykorzystanie różnorakich materiałów stabilizujących, w tym odpadów, włókien roślinnych oraz cementu, charakterystyka ziemnych obiektów zabytkowych, podatność na wstrząsy sejsmiczne, analiza cyklu życia (LCA) oraz właściwości hydrotermiczne. Stwierdzono, że większe przenikanie się obszarów badawczych mogłoby poszerzyć stan wiedzy na temat ziemnych technologii budowlanych. Zaobserwowano również nikłe zainteresowanie schronami ziemnymi, jako że literatura była skupiona głównie na ziemi ubijanej w szalunkach i na cegłach suszonych.
Twórcy
  • Cracow University of Technology, Faculty of Architecture
Bibliografia
  • Abdulla, K.F., Cunningham, L.S. and Gillie, M. (2020), ‘Experimental Study on the Mechanical Properties of Straw Fiber-Reinforced Adobe Masonry,’ Journal of Materials in Civil Engineering, 32(11), 04020322. Available at: http://dx.doi.org/10.1061/(ASCE)MT.1943-5533.0003410 (accessed: 16.07.2022).
  • Anysz, H. et al. (2020). ‘Feature Importance of Stabilised Rammed Earth Components Affecting the Compressive Strength Calculated with Explainable Artificial Intelligence Tools,’ Materials, 13(10), 2317. Available at: https://doi.org/10.3390/ma13102317 (accessed: 16.07.2022).
  • Arrigoni, A. et al. (2018), ‘Rammed Earth Incorporating Recycled Concrete Aggregate: A Sustainable, Resistant and Breathable Construction Solution,’ Resources, Conservation and Recycling, 137, pp. 11–20. Available at: https://doi.org/10.1016/j.resconrec.2018.05.025 (accessed: 16.07.2022).
  • Ávila, F., Puertas, E. and Gallego, R. (2021), ‘Characterization of the Mechanical and Physical Properties of Unstabilized Rammed Earth: A Review’, Construction and Building Materials, 270, 121435. Available at: https://doi.org/10.1016/j.conbuildmat.2020.121435 (accessed: 16.07.2022).
  • Barnaś, K. (2021), Technologia surowej ziemi w projektowaniu urbanistyczno-architektonicznym, PhD thesis, Cracow University of Technology.
  • Ben-Alon, L. et al. (2021), ‘Life Cycle Assessment (LCA) of Natural vs Conventional Building Assemblies,’ Renewable and Sustainable Energy Reviews, 144, 110951. Available at: https://doi.org/10.1016/j.rser.2021.110951 (accessed: 16.07.2022).
  • Brando, G. et al. (2021), ‘Structural Survey and Empirical Seismic Vulnerability Assessment of Dwellings in the Historical Centre of Cusco, Peru,’ International Journal of Architectural Heritage, 15(10), pp. 1395–1423. Available at: http://dx.doi.org/10.1080/15583058.2019.1685022 (accessed: 16.07.2022).
  • BRE (2008), ‘Green Guide 2008 Ratings,’ BREGroup. com. Available at: https://tools.bregroup.com/greenguide/ggelement.jsp?buildingType=Offices&category=1019&parent=6&elementType=10166 (accessed: 9.09.2022).
  • Bui, T.L. et al. (2020), ‘Out-of-Plane Behavior of Rammed Earth Walls Under Seismic Loading: Finite Element Simulation,’ Structures, 24, pp. 191–208. Available at: https://doi.org/10.1016/j.istruc.2020.01.009 (accessed: 16.07.2022).
  • Dabaieh, M. et al. (2020), ‘A Comparative Study of Life Cycle Carbon Emissions and Embodied Energy Between Sun-Dried Bricks and Fired Clay Bricks,’ Journal of Cleaner Production, 275, 122998. Available at: https://doi.org/10.1016/j.jclepro.2020.122998 (accessed: 16.07.2022).
  • Du, Y. et al. (2020), ‘Study on Damage Assessment of Earthen Sites of the Ming Great Wall in Qinghai Province Based on Fuzzy-AHP and AHPT-TOPSIS,’ International Journal of Architectural Heritage. Conservation, Analysis, and Restoration, 14(6), pp. 903–916. Available at: https://doi.org/10.1080/15583058.2019.1576241 (accessed: 16.07.2022).
  • Fabbri, A. and Morel J.C. (2019), ‘The Performance Testing of Earthen Materials: Challenges and Future Developments,’ [in:] Ganjian, E. et al. (eds.), Proceedings of Fifth International Conference on Sustainable Construction Materials and Technologies (SCMT5): In Honour of The International Union of Laboratories and Experts in Construction Materials, Systems and Structures (RILEM), Coventry: Coventry University. Available at: http://dx.doi.org/10.18552/2019/IDSCMT5190 (accessed: 16.07.2022).
  • Fierascu, R.C., Doni, M. and Fierascu, I. (2020), ‘Selected Aspects Regarding the Restoration/Conservation of Traditional Wood and Masonry Building Materials: A Short Overview of the Last Decade Findings,’ Applied Available , 10(3), 1164. Available at: https://doi.org/10.3390/app10031164 (accessed: 16.07.2022).
  • Ghasemalizadeh, S. and Toufigh, V. (2020), ‘Durability of Rammed Earth Materials’, International Journal of Geomechanics, 20(11), 04020201. Available at: http://dx.doi.org/10.1061/(ASCE)GM.1943-5622.0001829 (accessed: 16.07.2022).
  • Gomaa, M. et al. (2022), ‘Digital Manufacturing for Earth Construction: A Critical Review,’ Journal of Cleaner Production, 388, 130630. Available at: https://doi.org/10.1016/j.jclepro.2022.130630 (accessed: 16.07.2022).
  • Gu, K. and Chen, B. (2020), ‘Loess Stabilization Using Cement, Waste Phosphogypsum, Fly Ash and Quicklime for Self-Compacting Rammed Earth Construction,’ Construction and Building Materials, 231, 117195. Available at: https://doi.org/10.1016/j.conbuildmat.2019.117195 (accessed: 16.07.2022).
  • Ige, O. and Danso, H. (2021), ‘Physico-Mechanical and Thermal Gravimetric Analysis of Adobe Masonry Units Reinforced with Plantain Pseudo-Stem Fibres for Sustainable Construction,’ Construction and Building Materials, 273, 121686. Available at: https://doi.org/10.1016/j.conbuildmat.2020.121686 (accessed: 16.07.2022).
  • Jiang, B. et al. (2020), ‘Hygrothermal Performance of Rammed Earth Wall in Tibetan Autonomous Prefecture in Sichuan Province of China,’ Building and Environment, 181, 107128. Available at: https://doi.org/10.1016/j.buildenv.2020.107128 (accessed: 16.07.2022).
  • Kelm, T. and Długosz-Nowicka, D. (2011), Budownictwo z surowej ziemi. Idea i realizacja, Warszawa: Oficyna Wydawnicza Politechniki Warszawskiej.
  • Khan, F.Z., Ahmad, M.E. and Ahmad, N. (2021), ‘Shake Table Testing of Confined Adobe Masonry Structures,’ Earthquakes and Structures, 20(2), pp. 149–160. Available at: http://dx.doi.org/10.12989/eas.2021.20.2.149 (accessed: 16.07.2022).
  • Li, Z., Noori, M. and Altabey, W.A. (2021), ‘Experimental and Numerical Assessment on Seismic Performance of Earth Adobe Walls,’ SDHM Structural Durability and Health Monitoring, 15(2), pp. 103–123. Available at: http://dx.doi.org/10.32604/sdhm.2021.011193 (accessed: 16.07.2022).
  • Li Piani, T. et al. (2020), ‘Dynamic Behaviour of Adobe Bricks in Compression: The Role of Fibres and Water Content at Various Loading Rates,’ Construction and Building Materials, 230, 117038. Available at: https://doi.org/10.1016/j.conbuildmat.2019.117038 (accessed: 16.07.2022).
  • Liu, S. et al. (2020), ‘Preliminary Study on Repairing Tabia Cracks by using Microbially Induced Carbonate Precipitation,’ Construction and Building Materials, 248, 118611. Available at: https://doi.org/10.1016/j.conbuildmat.2020.118611 (accessed: 16.07.2022).
  • Losini, A.E. et al. (2021), ‘Natural Additives and Biopolymers for Raw Earth Construction Stabilization - A Review,’ Construction and Building Materials, 304, 124507. Available at: https://doi.org/10.1016/j.conbuildmat.2021.124507 (accessed: 16.07.2022).
  • Luo, Y. et al. (2020), ‘Degradation of Rammed Earth Under Wind-Driven Rain: The Case of Fujian Tulou, China,’ Construction and Building Materials, 261, 119989. Available at: https://doi.org/10.1016/j.conbuildmat.2020.119989 (accessed: 16.07.2022).
  • Luo, Y. et al. (2021), ‘Degradation of Rammed Earth Under Soluble Salts Attack And Drying-Wetting Cycles: The Case of Fujian Tulou, China,’ Applied Clay Science, 212, 106202. Available at: https://doi.org/10.1016/j.clay.2021.106202 (accessed: 16.07.2022).
  • Mangeli, M. et al. (2022), ‘A New Look at Excavation Techniques and Design of Rock-Cut Architectures,’ Designs, 6(4), 64. Available at: https://doi.org/10.3390/designs6040064 (accessed: 16.07.2022).
  • Medvey, B. and Dobszay, G. (2020), ‘Durability of Stabilized Earthen Constructions: A Review,’ Geotechnical and Geological Engineering, 38, pp. 2403–2425. Available at: https://doi.org/10.1007/s10706-020-01208-6 (accessed: 16.07.2022).
  • Meek, A.H. et al. (2021), ‘Alternative Stabilized Rammed Earth Materials Incorporating Recycled Waste and Industrial By-Products: Life Cycle Assessment,’ Construction and Building Materials, 267, 120997. Available at: https://doi.org/10.1016/j.conbuildmat.2020.120997 (accessed: 16.07.2022).
  • Meybodian, H., Eslami, A. and Morshed, R. (2020), ‘Sustainable Lateral Strengthening of Traditional Adobe Walls Using Natural Reinforcements,’ Construction and Building Materials, 260, 119892. Available at: https:// doi.org/10.1016/j.conbuildmat.2020.119892 (accessed: 16.07.2022).
  • Minke, G. (2012), Building with Earth: Design and Technology of a Sustainable Architecture, Basel: Birkhäuser Verlag.
  • Mirjalili, A., Eslami, A. and Morshed, R. (2020), ‘Experimental Investigation into the Effect of Vertical Loading on In-Plane Cyclic Behavior of Adobe Walls,’ Construction and Building Materials, 264, 120706. Available at: https://doi.org/10.1016/j.conbuildmat.2020.120706 (accessed: 16.07.2022).
  • Morel, J.C. et al. (2021), ‘Earth as Construction Material in the Circular Economy Context: Practitioner Perspectives on Barriers to Overcome,’ Philosophical Transactions of the Royal Society B: Biological Sciences, 376(1834). Available at: https://doi.org/10.1098/rstb.2020.0182 (accessed: 16.07.2022).
  • Muñoz, P. et al. (2020), ‘Adobe Bricks Reinforced with Paper & Pulp Wastes Improving Thermal and Mechanical Properties,’ Construction and Building Materials, 254, 119314. Available at: https://doi.org/10.1016/j.conbuildmat.2020.119314 (accessed: 16.07.2022).
  • Narloch, P. et al. (2020), ‘The Effect of Soil Mineral Composition on the Compressive Strength of Cement Stabilized Rammed Earth,’ Materials, 13(2), 324. Available at: https://doi.org/10.3390%2Fma13020324 (accessed: 16.07.2022).
  • Olacia, E. et al. (2020), ‘Sustainable Adobe Bricks with Seagrass Fibres. Mechanical and Thermal Properties Characterization,’ Construction and Building Materials, 239, 117669. Available at: https://doi.org/10.1016/j.conbuildmat.2019.117669 (accessed: 16.07.2022).
  • Pacheco-Torgal, F. and Jalali, S. (2012), ‘Earth Construction: Lessons from the Past for Future Eco-Efficient Construction’, Construction and Building Materials, 29, pp. 512–519. Available at: https://doi.org/10.1016/j.conbuildmat.2011.10.054 (accessed: 16.07.2022).
  • Parracha, J.L. et al. (2020), ‘Mineralogical and Microstructural Characterisation of Rammed Earth and Earthen Mortars from 12th Century Paderne Castle,’ Journal of Cultural Heritage, 42, pp. 226–239. Available at: https://doi.org/10.1016/j.culher.2019.07.021 (accessed: 16.07.2022).
  • Pavan, G.S., Ullas, S.N. and Nanjunda Rao, K.S. (2020), ‘Shear Behavior of Cement Stabilized Rammed Earth Assemblages,’ Journal of Building Engineering, 27, 100966.
  • Preciado, A. et al. (2020), ‘Seismic Vulnerability Assessment and Reduction at a Territorial Scale on Masonry and Adobe Housing by Rapid Vulnerability Indicators: The Case of Tlajomulco, Mexico,’ International Journal of Disaster Risk Reduction, 44, 101425.
  • Radziszewska-Zielina, E. et al. (2022), ‘Decision-Making Support for Housing Projects in Post-Industrial Areas,’ Sustainability, 14(6), 3573. Available at: https://www.mdpi.com/2071-1050/14/6/3573, https://doi.org/10.3390/su14063573 (accessed 10.07.2022).
  • Ramakrishnan, S. et al. (2020), ‘Adobe Blocks Reinforced with Natural Fibres: A Review,’ Materials Today: Proceedings, 45(7), pp. 6493–6499. Available at: https://www.sciencedirect.com/science/article/pii/S2214785320389951 (accessed: 16.07.2022).
  • Rojat, F. et al. (2020), ‘Towards an Easy Decision Tool to Assess Soil Suitability for Earth Building,’ Construction and Building Materials, 257, 119544. Available at: https://doi.org/10.1016/j.conbuildmat.2020.119544 (accessed: 16.07.2022).
  • Saboor, S. et al. (2021), ‘Strategic Design of Wall Envelopes for the Enhancement of Building Thermal Performance at Reduced Air-Conditioning Costs,’ Environmental Research, 193, 110577. Available at: https://doi.org/10.1016/j.envres.2020.110577 (accessed: 16.07.2022).
  • Salih, M.M., Osofero, A.I. and Imbabi, M.S. (2020), ‘Critical Review of Recent Development in Fiber Reinforced Adobe Bricks for Sustainable Construction,’ Frontiers of Structural and Civil Engineering, 14(4), pp. 839–854. Available at: https://doi.org/10.1007/s11709-020-0630-7 (accessed: 16.07.2022).
  • Samadianfard, S. and Toufigh, V. (2020), ‘Energy Use and Thermal Performance of Rammed-Earth Materials,’ Journal of Materials in Civil Engineering, 32(10), 04020276. Available at: https://ascelibrary.org/doi/pdf/10.1061/ %28ASCE%29MT.1943-5533.0003364?download=true (accessed: 16.07.2022).
  • Sandberg, M., Klockars, K. and Wilén, K. (2019), ‘Green Growth or Degrowth? Assessing the Normative Justifications for Environmental Sustainability and Economic Growth Through Critical Social Theory,’ Journal of Cleaner Production, 206, pp. 133–141. Available at: https://doi.org/10.1016/j.jclepro.2018.09.175 (accessed: 16.07.2022).
  • Shrestha, K.C. et al. (2020), ‘Strengthening of Rammed Earth Structures with Simple Interventions,’ Journal of Building Engineering, 29, 101179. Available at: https://doi.org/10.1016/j.jobe.2020.101179 (accessed: 16.07.2022).
  • Snyder, H. (2019), ‘Literature Review as a Research Methodology: An Overview and Guidelines,’ Journal of Business Research, 104, pp. 333–339. Available at: https://doi.org/10.1016/j.jbusres.2019.07.039 (accessed: 16.07.2022).
  • Sumerente, G. et al. (2020), ‘Assessment of Combined In- -Plane and Out-of-Plane Fragility Functions for Adobe Masonry Buildings in the Peruvian Andes,’ Frontiers in Built Environment, 6, 52. Available at: https://www. frontiersin.org/articles/10.3389/fbuil.2020.00052/full (accessed: 16.07.2022).
  • Śladowski, G. et al. (2021), ‘The Boyen Fortress: Structural Analysis of Selecting Complementary Forms of Use for a Proposed Adaptive Reuse Project,’ Heritage Science, 9, 76. Available at: https://doi.org/10.1186/s40494-021-00550-z (accessed: 16.07.2022).
  • Torraco, R.J. (2005), ‘Writing Integrative Literature Reviews: Guidelines and Examples,’ Human Resource Development Review, 4(3), pp. 356–367. Available at: https://doi.org/10.1177/1534484305278283 (accessed: 16.07.2022).
  • Traoré, L.B. et al. (2021), ‘Experimental Assessment of Freezing-Thawing Resistance of Rammed Earth Buildings,’ Construction and Building Materials, 274, 121917. Available at: https://doi.org/10.1016/j.conbuildmat.2020.121917 (accessed: 16.07.2022).
  • Venkatarama Reddy, B.V. et al. (2022), ‘Codes and Standards on Earth Construction,’ [in:] Fabbri, A. et al. (eds.), Testing and Characterisation of Earth-Based Building Materials and Elements: State-of-the-Art Report of the RILEM TC 274-TCE, vol. 35, Cham: Springer, pp. 243–259.
  • World Commission on Environment and Development (1987), Our Common Future, Oxford: United Nations, Oxford University Press.
  • Zare, P. et al. (2020), ‘Experimental Investigation of Non-Stabilized and Cement-Stabilized Rammed Earth Reinforcement by Waste Tire Textile Fibers (WTTFs),’ Construction and Building Materials, 260, 120432. Available at: https://doi.org/10.1016/j.conbuildmat.2020.120432 (accessed: 16.07.2022).
  • Zhao, X. et al. (2020), ‘Evaluation of Thermal Environments for Cliff-Side Cave Dwellings in Cold Region of China’, Renewable Energy, 158, pp. 154–166. Available at: https://doi.org/10.1016/j.renene.2020.05.128 (accessed: 16.07.2022).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-17fec545-fd6a-4a7d-b472-803d2dfdb87e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.