PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of pressure behavior in a temperature controlled molecular dynamic flow

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Thermo-fluid properties are required for numerical modeling of nano/micro devices. These properties are mostly obtained from results of molecular dynamics (MD) simulations. Therefore, efforts have been put in developing methods for numerical evaluation of fluid properties, such as pressure. In this paper, the pressure behavior in a controllable nanochannel flow is investigated. The nanoflow field is created by imposing a gradient of a macroscopic property such as temperature. Details of the pressure calculation method in a molecular system and its sensitivity to the approximations made are described first. The effect of temperature rise in a uniform flow on the pressure field is studied next. Then, in the flow under a fixed mean velocity condition, the effect of temperature gradient as a controllable property on the pressure field of nanoflow is studied. Velocity, pressure and molecular density of nanoflows with various temperature gradients and different temperature levels are investigated as well. It has been found that the temperature level at which the temperature gradient is imposed, is important. A fixed temperature gradient will not always lead to the same pressure gradient at different temperature levels. Furthermore, quite interestingly, it is observed that at a fixed temperature gradient, with the variation of mean velocity the pressure field also varies.
Słowa kluczowe
Rocznik
Strony
881--892
Opis fizyczny
Bibliogr. 36 poz., rys.
Twórcy
autor
  • Department of Aerospace Engineering, Amirkabir University of Technology, Tehran, Iran
  • Department of Aerospace Engineering, Amirkabir University of Technology, Tehran, Iran
Bibliografia
  • 1. Allen M.P., Tildesley D.J., 1987, Computer Simulation of Liquids Oxford, New York
  • 2. Branam R.D., Micci M.M., 2009, Comparison of wall models for the molecular dynamics simulation of microflows, Nanoscale and Microscale Thermophysical Engineering, 13, 1-12
  • 3. Darbandi M., Abbassi H.R., Khaledi Alidusti R., Sabouri M., 2011, Molecular dynamics simulation of nano channel as nanopumps, ICNMM, Edmonton, Alberta, Canada
  • 4. Fan X.J., Phan-Thien N., Teng Yong N., Diao X., 2002, Molecular dynamics simulation of a liquid in a complex nano channel flow, Physics of Fluids, 14, 3, 1146-1153
  • 5. Han M., 2008, Thermally-driven nanoscale pump by molecular dynamics simulation, Journal Title: Journal of Mechanical Science and Technology, 22, 157-165
  • 6. Hanasaki I., Nakatani A., 2006, Fluidized piston model for molecular dynamics simulations of hydrodynamics flow, Modelling and Simulation in Materials Science and Engineering, 14, S9-S20
  • 7. Huang C., Choi P.Y.K., Nandakumar K., Kostiuk L.W., 2006, Molecular dynamics simulation of a pressure-driven liquid transport process in a cylindrical nanopore using two self-adjusting plates, Journal of Chemical Physics, 124, 234701
  • 8. Huang C., Nandakumar K., Kwok D.Y., 2004, Non-equilibrium injection flow in a nanometer capillary channel, ICMENS’04, 374-378
  • 9. Kamali R., Kharazmi A., 2011, Molecular dynamics simulation of surface roughness effects on nanoscale flows, International Journal of Thermal Sciences, 50, 3, 226-232
  • 10. Karniadakis G.E., Beskok A., Aluru N., 2002, Micro Flows and Nanoflows, Springer, New York, 641-648
  • 11. Karimian S.M.H., Izadi S., 2013, Bin size determination for the measurement of mean flow velocity in molecular dynamics simulation, International Journal For Numerical Methods In Fluids, 71, 7, 930-938
  • 12. Karimian S.M.H., Izadi S., Barati Farimani A., 2011, A study on the measurement of mean velocity and its convergence in molecular dynamics simulations, International Journal for Numerical Methods in Fluids, 67, 12, 2130-2140
  • 13. Karimian S.M.H., Namvar S., 2012, Implementation of SMC averaging method in a channeled molecular flow of liquids and gases, Journal of Physics: Conference Series, 362, 1, 2029
  • 14. Kim B.H., Beskok A., Cagin T., 2010, Viscous heating in nanoscale shear driven liquid flows, Microfluid Nanofluid, 9, 31-40
  • 15. Koplik J., Banavar J., Willemsen J., 1988, Molecular dynamics of poiseuille flow and moving contact lines, Physical Review Letters, 60, 1282-1285
  • 16. Koplik J., Banavar J. R., Willemsen J.F., 1989, Molecular dynamics of fluid flow at solid surfaces, Physics of Fluids A, 1, 781-794
  • 17. Leach A.R., 1999, Molecular Modeling: Principles and Applications, Longman
  • 18. Liu C., Li Z., 2010, Molecular dynamics simulation of composite nanochannels as nanopumps driven by symmetric temperature gradients, Physical Review Letters, 105, 174501
  • 19. Mi X.B., Chwang A. T., 2003, Molecular dynamics simulations of nanochannel flows at low Reynolds numbers, Molecules, 8, 193-206
  • 20. Nagayama G., Cheng P., 2004, Effects of interface wettability on microscale flow by molecular dynamics simulation, International Journal of Heat and Mass Transfer, 47, 501-513
  • 21. Namvar S., Karimian S.M.H., 2012, Detailed investigation on the effect of wall spring stiffness on velocity profile in molecular dynamics simulation, Journal of Physics: Conference Series, 362, 1, 2039
  • 22. Plimpton S.J., 1995, Fast parallel algorithms for short-range molecular dynamics, Journal of Computational Physics, 117, 1
  • 23. Priezjev N.V., 2007, Effect of surface roughness on rate-dependent slip in simple fluids, Journal of Chemical Physics, 127, 144708
  • 24. Rapaport D.C., 2004, The Art of Molecular Dynamics Simulation, Cambridge University Press
  • 25. Sadus R.J., 2002, Molecular Simulation of Fluids: Theory, Algorithms and Object-Orientation, Elsevier
  • 26. Sofos F., Karakasidas T.E., Liakopoulos A., 2009, Non-equilibrium molecular dynamics investigation of parameters affecting planar nanochannel flows, Contemporary Engineering Sciences, 2, 6, 283-298
  • 27. Stillinger F.H., Rahman A., 1974, Improved simulation of liquid water by molecular dynamics, Journal of Chemical Physics, 60, 1545-1557
  • 28. Sun M., Ebner C., 1992, Molecular-Dynamics simulation of compressible fluid flow in two- -dimensional channels, Physical Review A, 46, 4813
  • 29. Todd B.D., Evans D.J., Davis P.J., 1995, Pressure tensor for inhomogeneous fluids, Physical Review E, 52, 1627
  • 30. Travis K.P., Evans D.J., 1997, Molecular spin in a fluid undergoing Poiseuille flow, Physical Review E, 55, 1566-1572
  • 31. Travis K.P., Gubbins K.E., 2000, Poiseuille flow of Lennard-Jones fluids in narrow slit pores, Journal of Chemical Physics, 112, 1984-1994
  • 32. Tysanner M.W., Garcia A.L., 2004, Measurement bias of fluid velocity in molecular simulations, Journal of Computational Physics, 196, 173-183
  • 33. Tysanner M.W., Garcia A.L., 2005, Non-equilibrium behavior of equilibrium reservoirs in molecular simulations, International Journal of Numerical Methods in Fluids, 2050, 1-12
  • 34. Verlet L., 1967, Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules, Physical Review, 159, 98
  • 35. Zhang Z.Q., Zhang H.W., Ye H.F., 2009, Pressure-driven flow in parallel-plate nanochannels, Applied Physics Letters, 95, 154101
  • 36. Ziarani A.S., Mohamad A.A., 2005, A Molecular dynamics study of perturbed Poiseuille flow in a nanochannel, Microfluid Nanofluid, 2, 12-20
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniajacą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-17fb2299-87a0-420f-a8ae-51f49ec44202
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.