PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of climate change and its potential influence on energy performance of building and indoor temperatures. Part 2: Energy and thermal simulation

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Analiza zmiany klimatu i jego wpływu na charakterystykę energetyczną budynku oraz temperatury wewnętrzne. Część 2: Symulacje energetyczne i środowiska wewnętrznego
Języki publikacji
EN
Abstrakty
EN
The subject of this paper is the analysis of possible influence of climate change on the energy performance of building and indoor temperatures. The model is based on the Maison Air et Lumière house, which concept was developed as part of the Model Homo 2020 project. It was a low-energy, single family, detached house. The model was divided into three thermal zones and developed by using SketchUp software. The analysis of the climate change was made on the example of the city in Poland - Kielce and described in the first part of the paper. Dynamic calculations of the building model were performed by using the TRNSYS software. The calculations were made for three different scenarios relating to existing technical systems: ventilation, ventilation + heating, ventilation + heating + cooling. Annual energy consumption and rooms air temperature changes were estimated for each variant. The results showed higher risk of summer discomfort and change in energy balance of building what indicates the need to use the cooling system in the future during the summer to reduce the discomfort of overheating. In the variant without the cooling system, the percentage of time with an indoor temperature above 27°C increased from 23.7% to 44.2% in zone 2. The energy demand for heating was reduced by 23.4% compared to the current climate, and the energy consumption for cooling (with the cooling option) increased significantly by 232% compared to the current demand. Summarizing, research indicates that with global warming, the energy demand for heating will decrease and the cooling demand will increase significantly in order to maintain the required user comfort.
PL
Przedmiotem niniejszego artykułu jest analiza możliwego wpływu zmian klimatycznych na charakterystykę energetyczną budynku i temperatury wewnętrzne. Model budynku oparty jest na domu Maison Air et Lumière, którego koncepcja powstała w ramach projektu Model Homo 2020. Jest to niskoenergetyczny, jednorodzinny, wolnostojący dom. Model został podzielony na trzy strefy i stworzony przy użyciu oprogramowania SketchUp. Analiza zmian klimatycznych została przeprowadzona na przykładzie miasta Kielce i opisana w pierwszej części artykułu. Obliczenia symulacyjne przeprowadzono przy użyciu oprogramowania TRNSYS. Wykonano je dla trzech różnych scenariuszy odnoszących się do systemów technicznych - wentylacja, wentylacja + ogrzewanie, wentylacja + ogrzewanie + chłodzenie. Dla każdego wariantu określono roczne zapotrzebowanie energii oraz zmianę temperatury operatywnej w pomieszczeniach. Wyniki wykazały większe ryzyko wystąpienia dyskomfortu w okresie letnim oraz zmianę bilansu energetycznego budynku wraz z ocieplaniem się klimatu. W wariancie bez systemu chłodzenia odsetek czasu z temperaturą wewnętrzną powyżej 27°C wzrósł z 2,6% do 29,0% w strefie 3 oraz z 23,7% do 44,2% w strefie 2. Zapotrzebowanie na energię do ogrzewania zmniejszyło się o 23,4% w stosunku do obecnego klimatu, a zużycie energii do chłodzenia (przy opcji z chłodzeniem) znacznie wzrosło o 232% w stosunku do obecnego zapotrzebowania.
Rocznik
Strony
195--209
Opis fizyczny
Bibliogr. 24 poz., il., tab.
Twórcy
  • University of Technology, Faculty of Civil Engineering, Warsaw, Poland
  • University of Technology, Faculty of Civil Engineering, Warsaw, Poland
  • Faculty of Civil Engineering, Wroclaw University of Science and Technology, Wrocław, Poland
Bibliografia
  • [1] S. Firląg, A. Miszczuk, and B. Witkowski, “Analysis of climate change and its potential influence on energy performance of building and indoor temperatures, part 1: Climate change scenarios”, Archives of Civil Engineering, vol. 67, no. 3, pp. 29-42, 2021, doi: 10.24425/ace.2021.138041.
  • [2] A. Ogando, N. Cid, and M. Fernández, “Energy modelling and automated calibrations of ancient building simulations: A case study of a school in the northwest of Spain”, Energies, vol. 10, no. 6, 2017, doi: 10.3390/en10060807.
  • [3] S. Firląg, “Cost-optimal plus energy building in a cold climate”, Energies, vol. 12, no. 20, 2019, doi: 10.3390/en12203841.
  • [4] A.B. Atmaca and G.Z. Gedik, “Determination of thermal comfort of religious buildings by measurement and survey methods: Examples of mosques in a temperate-humid climate”, Journal of Building Engineering, vol. 30, 2020, doi: 10.1016/j.jobe.2020.101246.
  • [5] R. Elghamry and H. Hassan, “Impact of window parameters on the building envelope on the thermal comfort, energy consumption and cost and environment”, International Journal of Ventilation, vol. 19, no. 4, pp. 233-259, 2020, doi: 10.1080/14733315.2019.1665784.
  • [6] D. Heim and A. Miszczuk, “Modelling building infiltration using the airflow network model approach calibrated by air-tightness test results and leak detection”, Building Services Engineering Research and Technology, vol. 41, no. 6, 2020, doi: 10.1177/0143624420904344.
  • [7] T. Kuczyński and A. Staszczuk, “Experimental study of the influence of thermal mass on thermal comfort and cooling energy demand in residential buildings”, Energy, vol. 195, 2020, doi: 10.1016/j.energy.2020.116984.
  • [8] PN-EN 15251:2012 Parametry wejściowe środowiska wewnetrznego dotyczące projektowania i oceny charakterystyki energetycznej budynków, obejmujące jakość powietrza wewnetrznego, środowisko cieplne, oświetlenie i akustykę.
  • [9] K. Kurowski, “The influence of building and installation conditions on shaping the optimal conditions of room microclimate”, in E3S Web of Conferences, vol. 45, 2018, doi: 10.1051/e3sconf/20184500042.
  • [10] R.F. Rupp, J. Kim, E. Ghisi, and R. de Dear, “Thermal sensitivity of occupants in different building typologies: The Griffiths Constant is a Variable”, Energy and Buildings, vol. 200, pp. 11-20, 2019, doi: 10.1016/j.enbuild.2019.07.048.
  • [11] M.A. Humphreys and J.F. Nicol, “Understanding the adaptive approach to thermal comfort”, ASHRAE Transactions, 1998.
  • [12] M. Santamouris, “Cooling the buildings - past, present and future”, Energy and Buildings, vol. 128, pp. 617-638, 2016, doi: 10.1016/j.enbuild.2016.07.034.
  • [13] A. Miszczuk and D. Heim, “Parametric study of air infiltration in residential buildings - the effect of local conditions on energy demand”, Energies, vol. 14, no. 1, 2021, doi: 10.3390/en14010127.
  • [14] T. Kisilewicz, M. Fedorczak-Cisak, and T. Barkanyi, “Active thermal insulation as an element limiting heat loss through external walls”, Energy and Buildings, vol. 205, 2019, doi: 10.1016/j.enbuild.2019.109541.
  • [15] S. Firląg and A. Miszczuk, “Szczelność powietrzna budynków energooszczędnych a instalacje”, Rynek Instalacyjny, vol. 4, pp. 56-62, 2015.
  • [16] D. Prakash and P. Ravikumar, “Transient analysis of heat transfer across the residential building roof with PCM and wood wool- A case study by numerical simulation approach”, Archives of Civil Engineering, vol. 59, no. 4, pp. 483-497, 2013, doi: 10.2478/ace-2013-0026.
  • [17] S. Firląg and A. Chmielewski, “Defining the Polish nearly Zero Energy Building (nZEB) renovation standard”, IOP Conference Series: Materials Science and Engineering, vol. 415, 2018, doi: 10.1088/1757-899X/415/1/012001.
  • [18] Y. Yang, K. Javanroodi, and V.M. Nik, “Climate change and energy performance of European residential building stocks - A comprehensive impact assessment using climate big data from the coordinated regional climate downscaling experiment”, vol. 298, 2021, doi: 10.1016/j.apenergy.2021.117246.
  • [19] TRNBuild, 2017 [software].
  • [20] Model Home 2020 project, 2011, “Maison Air et Lumière”.
  • [21] A.L.S. Chan, “Developing future hourly weather files for studying the impact of climate change on building energy performance in Hong Kong”, Energy and Buildings, vol. 43, no. 10, pp. 2860-2868, 2011, doi: 10.1016/j.enbuild.2011.07.003.
  • [22] TRNSYS 17, 2012 [software].
  • [23] F.H. Ismaila, M. Shahrestani, M. Vahdati, P. Boyd, and S. Donyavi, “Climate change and the energy performance of buildings in the future - A case study for prefabricated buildings in the UK”, Journal of Building Engineering, vol. 39, 2021, doi: 10.1016/j.jobe.2021.102285.
  • [24] M.P. Tootkaboni, I. Ballarini, and V. Corrado, “Analysing the future energy performance of residential buildings in the most populated Italian climatic zone: A study of climate change impacts”, Energy Reports, vol. 7, 2021, doi: 10.1016/j.egyr.2021.04.012.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-17f992ef-e3b7-4c37-8132-417001b8459b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.