PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improving the Quality of Anaerobically-Pretreated Palm Oil Mill Effluent Using Electrocoagulation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The palm oil extraction process generates large amounts of effluents with very high concentrations of pollutants, even though they are subjected to anaerobic pretreatment. Further treatment is needed in order to ensure that the effluent is safe for disposal or reuse. This work was conducted to evaluate the performance of an electrocoagulation process in removing pollutants from the anaerobically-pretreated palm oil mill effluent. A 1000 ml beaker glass equipped with a magnetic stirrer was used as an electrocoagulation reactor with four plates of aluminum electrode @ 12×2 cm and an effective area of 0.1 m2 arranged in a bipolar configuration. The experiments run in a batch mode were carried out at various voltage levels and contact times, namely 10, 15, and 20 V for 15, 30, 45 and 60 min. The level of pollutant removal and electrical energy consumption were determined. The electrocoagulation process at 15 V for 30 min produced the highest level of pollutant removal for TSS, turbidity, color, COD, and BOD5, i.e. 90%, 86%, 93%, 87%, and 97%, respectively. The estimated operating costs for these process conditions are 1.48 USD/m3. A second order empirical model was developed to describe the TSS removal in the POME electrocoagulation process. The electrocoagulation with aluminum electrodes can significantly reduce various types of pollutants of anaerobically-pretreated POME, such as TSS, turbidity, color, COD, and BOD5. The estimated cost of EC operation is cheaper than the chemical coagulation process.
Rocznik
Strony
112--124
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
autor
  • Department of Agroindustrial Technology, IPB University, Bogor, Indonesia
  • Department of Agroindustrial Technology, IPB University, Bogor, Indonesia
  • Department of Agroindustrial Technology, IPB University, Bogor, Indonesia
  • Department of Agroindustrial Technology, IPB University, Bogor, Indonesia
  • Department of Agroindustrial Technology, IPB University, Bogor, Indonesia
  • Department of Agroindustrial Technology, IPB University, Bogor, Indonesia
Bibliografia
  • 1. Al-Qodah Z., Tawalbeh M., Al-Shannag M., AlAnber Z., Bani-Melhem K. 2020. Combined electrocoagulation processes as a novel approach for enhanced pollutants removal: A state-of-the-art review. Sci. Total. Environ., 744, 1–67.
  • 2. APHA. 2017. Standar method for the examination of water and wastewater. American Public Health Association. 23rd Ed. APHA, Washington, DC.
  • 3. Bharath M., Krishna B.M., Manoj K.B. 2018. A review of electrocoagulation process for wastewater treatment. Int. J. Chem. Technol. Res., 11(3), 289–302.
  • 4. BPS (Indonesia Central Bureau of Statistics). 2019. Foreign trade statistics bulletin. BPS RI.
  • 5. Brahmi K., Bouguerra W., Hamrouni B., Elaloui E., Loungou M., Tlili Z. 2019. Investigation of electrocoagulation reactor design parameters effect on the removal of cadmium from synthetic and phosphate industrial wastewater. Arab J. Chem., 12, 1848–1859.
  • 6. Butler E., Hung Y-T., Yeh RY-L., Suleiman A.A.M. 2011. Electrocoagulation in wastewater treatment. Water, 3, 495–525.
  • 7. de la Luz-Pedro A., Prior E.F.M., Lopez-Araiza M.H., Jaime-Ferrer S., Estrada-Monje A., Banuelos J.A. 2019. Pollutant removal from wastewater at different stages of the tanning process by electrocoagulation. J. Chem., 2019, 1–9.
  • 8. de Souza M.T.F., Ambrosio E,; de Almeida C.A., Freitas T.K.F.S., Santos L.B., Almeida V.C., Garcia J.C. 2014. The use of a natural coagulant (Opuntia ficus-indica) in the removal for organic materials of textile effluents. Environ. Monit. Assess., 186, 5261–5271.
  • 9. Essadki A.H., Gourich B., Azzi M., Vial C.H., Delmas H. 201). Kinetic study of defluoridation of drinking water by electrocoagulation/electroflotation in a stirred tank reactor and in an external-loop airlift reactor. Chem. Eng. J., 164, 106–114.
  • 10. Geraldino H.C.L., Simionato J.I., Freitas T.K.F.S., Garcia J.C., Junior O.C., Correr C.J. 2015. Efficiency and operating cost of electrocoagulation system applied to the treatment of dairy industry wastewater. Acta Sci. Technol., 37, 401–408.
  • 11. Hasanudin U., Sugiharto R., Haryanto A., Setiadi T., Fujie K. 2015. Palm oil mill effluent treatment and utilization to ensure the sustainability of palm oil industries. Water Sci. Technol., 72(7), 1089–1095.
  • 12. Hassan M.A.A., Puteh M.H. 2007. Pre-treatment of palm oil mill effluent (POME): a comparison study using chitosan and alum. Malays. J. Civ. Eng., 19(2), 38–51.
  • 13. Hossain M.S., Omar F., Asis A.J., Bachmann R.T., Sarker M.Z.I., Kadir M.O.A. 2019. Effective treatment of palm oil mill effluent using FeSO4.7H2O waste from titanium oxide industry: Coagulation adsorption isotherm and kinetics studies. J. Clean. Prod., 219, 86–98.
  • 14. Ibrahim S., Aris N.S.M., Ariffin B., Hawari Y., Kamal M.A., Hanafiah M. 2018. Application of electrocoagulation process for decolourisation of palm oil mill effluent (POME). Nat. Environ. Pollut. Technol., 17(4), 1267–1271.
  • 15. Islam S.M.N., Rahman S.H., Rahman M.M., Adyel T.M., Yesmin R.A., Ahmed M.S., Kaiser N. 2011. Excessive turbidity removal from textile effluents using electrocoagulation technique. J. Sci. Res., 3(3), 557–568.
  • 16. Islam S.M.N., Rahman S.H., Adyel M.T., Ahmed M.S., Yesmin R.A., Rahman M.M., Kaiser N. 2011. Electrocoagulation (EC) technique for color removal from orange II dye. Bangladesh J. Environ. Res., 9, 45–52.
  • 17. Islam S.M.D. 2017. Electrocoagulation (EC) technology for wastewater treatment and pollutants removal. Sustain. Water Resour. Manage., 5, 359–380.
  • 18. Kabdaşlı I., Arslan-Alaton I., Ölmez-Hancı T., Tünay O. 2012. Electrocoagulation applications for industrial wastewaters: a critical review. Environ. Technol. Rev., 1(1), 2–45.
  • 19. Liew R.K., Nam W.L., Chong M.Y., Phang X.Y., Su M.H., Yek P.N.Y., Ma N.L., Cheng C.K., Chong C.T., Lam S.S. 2018. Oil palm waste: An abundant and promising feedstock for microwave pyrolysis conversion into good quality biochar with potential multi-applications. Process Saf. Environ. Prot., 115, 57–69.
  • 20. Malakootian M., Fatehizadeh A. 2010. Color removal from water by coagulation/caustic soda and lime. Iran J. Environ. Heal. Sci. Eng., 7(3), 267–272.
  • 21. Markou V., Kontogianni M.C., Frontistis Z., Tekerlekopoulou A.G., Katsaounis A., Vayenas D. 2017 .Electrochemical treatment of biologically pretreated dairy wastewater using dimensionally stable anodes. J. Environ. Manage., 202, 217–224.
  • 22. Marriaga-Cabrales N., Machuca-Martínez F. 2014. Fundamentals of electrocoagulation, in: Peralta-Hernández J.M., Rodrigo-Rodrigo M.A., Martinez-Huitle C.A. (Eds.), Evaluation of electrochemical reactors as a new way to environmental protection. Research Signpost, Kerala, India.
  • 23. Mollah M.Y.A., Gomes J.A.G., Das K.K., Cocke D.L. 2010. Electrochemical treatment of orange II dye solution-use of aluminum sacrificial electrodes and floc characterization. J. Hazard Mater., 174, 851–858.
  • 24. Noersatyo, Suprihatin, Iskandar A. 2020. Design of small-scale electrocoagulation reactor for non-sugar removal of sugarcane juice. IOP Conf. Ser. Earth Environ. Sci., 472, 1–11.
  • 25. Nwabanne J.T., Oguegbu O.O., Agu C.M. 2018. Kinetics and performance of coagulation process using Mucuna seed shell for the treatment of paint wastewater. J. Chinese Adv. Mater. Soc., 6, 738–754.
  • 26. Rachmawati B., Yayok S.P., Mirwan M. 2014. Proses elektrokoagulasi pengolahan limbah laundry. J. Ilm. Tek. Ling., 6(1), 15–22.
  • 27. Rahardjo P.N. 2016. Studi banding teknologi pengolahan limbah cair pabrik kelapa sawit. J. Tek. Ling., 10(1), 9–18.
  • 28. Sidik D.A.B., Hairom N.H.H., Mohammad A.W. 2019. Performance and fouling assessment of different membrane types in a hybrid photocatalytic membrane reactor (PMR) for palm oil mill secondary effluent (POMSE) treatment. Process Saf. Environ. Prot., 130, 265–274.
  • 29. Singh H., Mishra B.K. 2016. Performance evaluation of the electro-coagulation treatment process for the removal of total suspended solids and metals from water. Environ. Eng. Res., 1–25.
  • 30. Spellman F.R. 2008. The Science of water: concept and application.CRC Press, Taylor & Francis Group, USA.
  • 31. Suprihatin, Aselfa F.S. 2020. Pollutants removal in electrocoagulation of detergent wastewater. IOP Conf. Ser. Earth Environ. Sci., 472, 1–11.
  • 32. Verma M., Kumar R.N. 2018. Coagulation and electrocoagulation for co-treatment of stabilized landfill leachate and municipal wastewater. J. Water Reuse Desalin., 8, 234–243.
  • 33. Wang J., Mahmood Q., Qiu J.P., Li Y.S., Chang Y.S., Li X.D. 2015. Zero discharge performance of an industrial pilot-scale plant treating palm oil mill effluent. Biomed Res. Int., 2015, 1–9.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-17f8c92a-fa00-4570-a2ea-54f6d89152e0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.