PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A new chaotic hyperjerk system with four quadratic nonlinearities, its bifurcation analysis, multistability, circuit design and complete synchronization design via active backstepping control

Treść / Zawartość
Identyfikatory
Języki publikacji
EN
Abstrakty
EN
In this research work, we propose a new four-dimensional chaotic hyperjerk system with four quadratic nonlinearities. We carry out a detailed bifurcation analysis and derive conditions for the existence of a Hopf bifurcation for the new hyperjerk system. A linear analysis shows that there is only a unique trivial equilibrium state, whose stability depends solely on the parameter p. The only bifurcation possible is a Hopf bifurcation when p = 2. This is verified from bifurcation transition diagrams. We derive new results showing multistability and the existence of coexisting attractors for the new chaotic hyperjerk system. Using MultiSim, a new electronic circuit is designed for the new chaotic hyperjerk system with four quadratic nonlinearities. Finally, we present a control application for the proposed chaotic hyperjerk system with four quadratic nonlinearities. Using active backstepping control, we design a new controller that achieves complete synchronization for the master-slave chaotic hyperjerk systems with four quadratic nonlinearities.
Rocznik
Strony
697--713
Opis fizyczny
Bibliogr. 20 poz., rys., wzory
Twórcy
  • Centre for Control Systems, Vel Tech University, 400 Feet Outer Ring Road, Avadi, Chennai-600062, Tamil Nadu, India
  • Faculty of Information and Computing, Universiti Sultan Zainal Abidin, Terengganu, Malaysia
autor
  • Faculty of Informatics and Computing, Universiti Sultan Zainal Abidin, Gong Badak, 21300, Terengganu, Malaysia
  • Department of Mechanical Engineering, Universitas Muhammadiyah Tasikmalaya, Jawa Barat 46196, Indonesia
  • Mathematical Institute, University of Oxford, Andrew Wiles Building, ROQ, Oxford Ox2 6GG, UK
  • Department of Computer Science and Engineering, KKR & KSR Institute of Technology and Sciences, Vinjanampadu, Vatticherukuru Mandal, Guntur-522017, Andhra Pradesh, India
  • Faculty of Information and Computing, Universiti Sultan Zainal Abidin, Terengganu, Malaysia
  • Department of Electronics and Communication Engineering, Jerusalem College of Engineering, Narayanapuram, Pallikaranai, Chennai - 600 100, Tamil Nadu, India
Bibliografia
  • [1] E. Abbasi and S. Jafari: Chaotic dynamics in X-ray free-electron lasers with an optical undulator. Scientific Reports, 14(1), (2024). DOI: 10.1038/s41598-024-51891-1
  • [2] H. Liu, G. Dong, T. Zhao, X. Chen, J. Yu and M. Zhang: Monitoring distance enhancement with chaotic laser for OTDR system. IEEE Sensors Journal, 24(3), (2024), 2822-2827. DOI: 10.1109/JSEN.2023.3340181
  • [3] sc V. Rybin, D. Butusov, I. Babkin, D. Pesterev and V. Arlyapov: Some properties of a discrete Lorenz system obtained by variable midpoint method and its application to chaotic signal modulation. International Journal of Bifurcation and Chaos, 34(1), (2024). DOI: 10.1142/S0218127424500093
  • [4] L. Shen and K. Shen: Skyrmion-based chaotic oscillator driven by a constant current. Physical Review B, 109(1), (2024). DOI: 10.1103/PhysRevB.109.014422
  • [5] F. Wang, Z. Wu and T. Bao: Time-jerk optimal trajectory planning of industrial robots based on a hybrid WOA-GA algorithm. Processes, 10(5), (2022). DOI: 10.3390/pr10051014
  • [6] Z. Liu, J. Gao, X. Rao, S. Ding and D. Liu: Complex dynamics of the passive biped robot with flat feet: Gait bifurcation, intermittency and crisis. Mechanism and Machine Theory, 191 (2024). DOI: 10.1016/j.mechmachtheory.2023.105500
  • [7] Y. Li, C. Li, Q. Zhong, S. Liu and T. Lei: A memristive chaotic map with only one bifurcation parameter. Nonlinear Dynamics, 112(5), (2024), 3869-3886. DOI: 10.1007/s11071-023-09204-0
  • [8] X. An, S. Liu, L. Xiong, J. Zhang and X. Li: Mixed gray-color images encryption algorithm based on a memristor chaotic system and 2D compression sensing. Expert Systems with Applications, 243 (2024). DOI: 10.1016/j.eswa.2023.122899
  • [9] H. Wen and Y. Lin: Cryptanalysis of an image encryption algorithm using quantum chaotic map and DNA coding. Expert Systems with Applications, 237 (2024). DOI: 10.1016/j.eswa.2023.121514
  • [10] A.Y. Darani, Y.K. Yengeyeh, H. Pakmanesh and G. Navarro: Image encryption algorithm based on a new 3D chaotic system using cellular automata. Chaos, Solitons and Fractals, 179 (2024). DOI: 10.1016/j.chaos.2023.114396
  • [11] M.D. Johansyah, A. Sambas, S. Qureshi, S. Zheng, T.M. Abed-Elhameed, S. Vaidyanathan and I.M. Sulaiman: Investigation of the hyperchaos and control in the fractional order financial system with profit margin. Partial Differential Equations in Applied Mathematics, 9 (2024). DOI: 10.1016/j.padiff.2023.100612
  • [12] K.B. Kacchia: Chaos in fractional order financial model with fractal-fractional derivatives. Partial Differential Equations in Applied Mathematics, 7 (2023). DOI: 10.1016/j.padiff.2023.100502
  • [13] A. Sambas, M. Mahdal, S. Vaidyanathan, B. Ovilla-Martinez, E. Tlelo-Cuautle, A.A.A. El-Latif, B. Abd-El-Atty, K. Benkouider and T. Bonny: A new hyperjerk system with a half line equilibrium: Multistability, period doubling reversals, antimonotonocity, electronic circuit, FPGA design, and an application to image encryption. IEEE Access, 12 (2024), 9177-9194. DOI: 10.1109/ACCESS.2024.3351693
  • [14] E. Zambrano-Serrano and A. Anzo-Hernandez: A novel antimonotic hyperjerk system: Analysis, synchronization and circuit design. Physica D: Nonlinear Phenomena, 424 (2021). DOI: 10.1016/j.physd.2021.132927
  • [15] R. Wang, C. Li, S. Cicek, K. Rajagopal and X. Zhang: A memristive hyperjerk chaotic system: Amplitude control, FPGA design, and prediction with artificial neural network. Complexity, 2021 (2021). DOI: 10.1155/2021/6636813
  • [16] L. Moysis, E. Petavratzis, M. Marwan, C. Volos, H. Nistazakis and S. Ahmad: Analysis, synchronization, and robotic application of a modified hyperjerk chaotic system. Complexity, 2020 (2020). DOI: 10.1155/2020/2826850
  • [17] L.G. Costa and M.A. Savi: Nonlinear dynamics of a compact and multistable mechanical energy harvester. International Journal of Mechanical Sciences, 262 (2024). DOI: 10.1016/j.ijmecsci.2023.108731
  • [18] L. Laskaridis, C. Volos, H. Nistazakis and E. Meletlidou: Exploring the dynamics of a multistable general model of discrete memristor-based map featuring an exponentially varying memristance. Integration, 95 (2024). DOI: 10.1016/j.vlsi.2023.102131
  • [19] S. Shi, C. Du and L. Liu: Complex dynamics analysis and feedback control for a memristive switched chaotic system. Physica Scripta, 98(12), (2023). DOI: 10.1088/1402-4896/ad03cb
  • [20] V.-T. Pham, S. Vaidyanathan, C. Volos, S. Jafari and S.T. Kingni: A no-equilibrium hyperchaotic system with a cubic nonlinear term. Optik, 127 (2016), 3259-3265. DOI: 10.1016/j.ijleo.2015.12.048
Identyfikator YADDA
bwmeta1.element.baztech-17f77fb1-7716-4d66-9cc0-24ffe6000904