PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

The effect of tungsten carbide nanoparticles on the morphological, mechanical and tribological properties of WC/epoxy and WC/TBCP/epoxy nanocomposite

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The paper reported on the effect of a polyethylene glycol-block-polypropylene glycol-block-polyethylene glycol (EO-PPO-EO) triblock copolymer (TBCP) on phase separation, mechanical properties of epoxy based on bisphenol F-(epichlorohydrin) and hardener (1-methylethyl-1,1'-biphenyl) (izoforon diamine) system and effect of a tungsten carbide (WC) reinforced two of WC/epoxy resin and WC /triblock (TBCP)/epoxy nanocomposites. Design/methodology/approach: In the work, TBCP content was used at 3%, 6%, 9% and 12% wt. for epoxy matrix. The optimal TBCP concentration was discovered to be 3% wt. in order to produce a good balance of mechanical characteristics. The comparative study of morphology and mechanical properties of two systems, tungsten carbide (WC) reinforced epoxy resin and WC /triblock (TBCP) /epoxy nanocomposites, has been examined. WC was added to two systems in three different weight proportions (1%, 2% and 3%). Specimens were fabricated by hand layup technique by pouring epoxy resin and reinforcement mixture into silicon moulds. Findings: The addition of nanoparticles did not affect the miscibility of the copolymer on the resin. Tensile, impact and wear tests were performed to ASTM standards. From the results, it was observed that WC reinforcement in epoxy resin results in high tensile strength and modulus and also increases impact strength and wear resistance compared to neat epoxy. Practical implications: Several spherical formations concerning phase separation and the creation of immiscible TBCP structures in the epoxy matrix are seen. Originality/value: The tests proved that epoxy nanocomposite with TBCP and WC as filler demonstrated that the nanoparticles utilised with block copolymers do not affect the distribution of the copolymer in the matrix, suggesting enhancing the nanoparticle's adherence to the matrix were characterised by the best tribological properties and mechanical properties, which was unchanged or better than the epoxy resin used as a matrix.
Rocznik
Strony
5--16
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
  • Department of Polymer Engineering and Petrochemical Industries, Faculty of Materials Engineering, University of Babylon, Babylon, Iraq
autor
  • Department of Polymer Engineering and Petrochemical Industries, Faculty of Materials Engineering, University of Babylon, Babylon, Iraq
autor
  • Department of Physics, Faculty of Education for Pure Sciences, University of Babylon, Babylon, Iraq
Bibliografia
  • [1] M. Khalina, M.H. Beheshty, A. Salimi, Preparation and Characterization of DGEBA/EPN Epoxy Blends with Improved Fracture Toughness, Chinese Journal of Polymer Science 36 (2018) 632-640. DOI: https://doi.org/10.1007/s10118-018-2022-1
  • [2] H. Kishi, Y. Kunimitsu, Y. Nakashima, T. Abe, J. Imade, S. Oshita, Y. Morishita, M. Asada, Control of nanostructures generated in epoxy matrices blended with PMMA-b-PnBA-b-PMMA triblock copolymers, Express Polymer Lettres 9/1 (2015) 23-35. DOI: https://doi.org/10.3144/expresspolymlett.2015.4
  • [3] T. Li, M.J. Heinzer, L.F. Francis, F.S. Bates, Engineering superior toughness in commercially viable block copolymer modified epoxy resin, Journal of Polymer Science. Part B: Polymer Physics 54/2 (2016) 189-204. DOI: https://doi.org/10.1002/polb.23894
  • [4] A. Singh, P. Singla, S.C. Sahoo, P.K. Soni, Compatibility and thermal decomposition behavior of an epoxy resin with some energetic compounds, Journal of Energetic Materials 38/4 (2020) 432–444. DOI: https://doi.org/10.1080/07370652.2020.1727997
  • [5] S.V. Hoysala, P.K. Kumar, T. Madhusudhan, Static and dynamic behavior of jute-reinforced epoxy composites with and without silicon dioxide as epoxy modifier: A review, International Research Journal of Engineering and Technology 2/2 (2015) 480-484.
  • [6] H. Dodiuk, S.H. Goodman (eds), Handbook of Thermoset Plastics, 3 rd Edition, William Andrew, Norwich, NY, 2014. DOI: https://doi.org/10.1016/C2011-0-09694-1
  • [7] K. Kumar, P.K. Ghosh, A. Kumar, Improving mechanical and thermal properties of TiO2-epoxy nanocomposite, Composites Part B: Engineering 97 (2016) 353-360. DOI: https://doi.org/10.1016/j.compositesb.2016.04.080
  • [8] A.S. Thakur, N. Sharma, S. Kango, Effect of nano-particles on epoxy based composites: A short review, Materials Today: Proceedings 44/6 (2021) 4640-4642. DOI: https://doi.org/10.1016/j.matpr.2020.10.924
  • [9] K. Kornaus, A. Gubernat, D. Zientara, P. Rutkowski, L. Stobierski, Mechanical and thermal properties of tungsten carbide-graphite nanoparticles nanocomposites, Polish Journal of Chemical Technology 18/2 (2016) 84-88. DOI: https://doi.org/10.1515/pjct-2016-0033
  • [10] M.K. Reddy, V.S. Babu, K.V.S. Srinadh, M. Bhargav, Mechanical properties of tungsten carbide nano-particles filled epoxy polymer nano composites, Materials Today: Proceedings 26/2 (2020) 2711-2713. DOI: https://doi.org/10.1016/j.matpr.2020.02.569
  • [11] M.K. Reddy, V.S. Babu, K.V.S. Srinadh, Micro hardness and erosive wear behavior of tungsten carbide filled epoxy polymer nano composites, International Journal of Mathematical, Engineering and Management Sciences 5/3 (2020) 405-415. DOI: https://doi.org/10.33889/IJMEMS.2020.5.3.034
  • [12] H. Kishi, Y. Kunimitsu, Y. Nakashima, J. Imade, S. Oshita, Y. Morishita, M. Asada, Relationship between the mechanical properties of epoxy/PMMA-b-PNBA-b-PMMA block copolymer blends and their three-dimensional nanostructures, Express Polymer Letters 11/10 (2017) 765-777. DOI: https://doi.org/10.3144/expresspolymlett.2017.74
  • [13] W.-C. Chu, W.-S. Lin, S.-W. Kuo, Flexible epoxy resin formed upon blending with a triblock copolymer through reaction-induced microphase separation, Materials 9/6 (2016) 449. DOI: https://doi.org/10.3390/ma9060449
  • [14] J. Parameswaranpillai, S.K. Sidhardhan, P. Harikrishnan, J. Pionteck, S. Siengchin, A.B. Unni, A. Magueresse, Y. Grohens, N. Hameed, S. Jose, Morphology, thermo-mechanical properties and surface hydrophobicity of nanostructured epoxy thermosets modified with PEO-PPO-PEO triblock copolymer, Polymer Testing 59 (2017) 168-176. DOI: https://doi.org/10.1016/j.polymertesting.2017.01.029
  • [15] ASTM D638: Standard Test Method for Tensile Properties of Plastics, ASTM International, 2003.
  • [16] ISO 179-2: Plastics — Determination of Charpy impact properties Part 2: Instrumented impact test, ISO, 1997.
  • [17] ASTM G99-17: Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus, ASTM International, 2020.
  • [18] A.A.U. Kadhum, A.A. Mohammed, Investigation the Effect of Natural Materials on Wear and Hardness Properties of Polymeric Composite Materials, The Iraqi Journal For Mechanical And Material Engineering 16/4 (2016) 369-372.
  • [19] F.N. Alhabill, R. Ayoob, T. Andritsch, A.S. Vaughan, Influence of filler/matrix interactions on resin/hardener stoichiometry, molecular dynamics, and particle dispersion of silicon nitride/epoxy nanocomposites, Journal of Materials Science 53 (2018) 4144-4158. DOI: https://doi.org/10.1007/s10853-017-1831-x
  • [20] A. Lavoratti, A.J. Zattera, S.C. Amico, Effect of carbonaceous nanofillers and triblock copolymers on the toughness of epoxy resin, Polymer Bulletin 78 (2021) 5467-5480. DOI: https://doi.org/10.1007/s00289-020-03375-1
  • [21] M. Martin-Gallego, R. Verdejo, A. Gestos, M.A. Lopez-Manchado, Q. Guo, Morphology and mechanical properties of nanostructured thermoset/block copolymer blends with carbon nanoparticles, Composites Part A: Applied Science and Manufacturing 71 (2015) 136-143. DOI: https://doi.org/10.1016/j.compositesa.2015.01.010
  • [22] L. Cano, D.H. Builes, A. Tercjak, Morphological and mechanical study of nanostructured epoxy systems modified with amphiphilic poly(ethylene oxide-b- propylene oxide-b-ethylene oxide)triblock copolymer, Polymer 55/3 (2014) 738-745. DOI: https://doi.org/10.1016/j.polymer.2014.01.005
  • [23] J. Parameswaranpillai, S.K. Sidhardhan, S. Jose, S. Siengchin, J. Pionteck, A. Magueresse, Y. Grohens, N. Hameed, Reaction-induced phase separation and resulting thermomechanical and surface properties of epoxy resin/poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) blends cured with 4,4′- diaminodiphenylsulfone, Journal of Applied Polymer Science 134/4 (2017) 44406. DOI: https://doi.org/10.1002/app.44406
  • [24] L. Peponi, D. Puglia, L. Torre, L. Valentini, J.M. Kenny, Processing of nanostructured polymers and advanced polymeric based nanocomposites, Materials Science and Engineering: R: Reports 85 (2014) 1-46. DOI: https://doi.org/10.1016/j.mser.2014.08.002
  • [25] Y. Zare, Modeling the yield strength of polymer nano-composites based upon nanoparticle agglomeration and polymer-filler interphase, Journal of Colloid and Interface Science 467 (2016) 165-169. DOI: https://doi.org/10.1016/j.jcis.2016.01.022
  • [26] M.B. Schuster, C.V. Opelt, D. Becker, L.A.F. Coelho, Role and sinergy of block copolymer and carbon nanoparticles on toughness in epoxy matrix, Polymer Composites 39/S4 (2018) E2262-E2273. DOI: https://doi.org/10.1002/pc.24599
  • [27] P. Schmittinger (ed), Chapter 2. Physical Properties, in: Chlorine: Principles and Industrial Practice, 4th Edition, Wiley-VCH GmbH, Weinheim, 2015, 3-9. DOI: https://doi.org/10.1002/9783527613380.ch2
  • [28] A. Nassar, M. Salem, I. El-Batanony, E. Nassar, Improving wear resistance of epoxy/SiC composite using a modified apparatus, Polymers and Polymer Composites 29/9_suppl (2021) S389-S399. DOI: https://doi.org/10.1177/09673911211002731
  • [29] M.M. Sakka, Z. Antar, K. Elleuch, J.F. Feller, Tribological response of an epoxy matrix filled with graphite and/or carbon nanotubes, Friction 5 (2017) 171-182. DOI: https://doi.org/10.1007/s40544-017-0144-z
  • [30] A. Nassar, M. Younis, M. Ismail, E. Nassar, Improved wear-resistant performance of epoxy resin composites using ceramic particles, Polymers 14/2 (2022) 333. DOI: https://doi.org/10.3390/polym14020333
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-17f64852-2327-4d82-8fda-2fb2b844c22a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.