PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermal alterations of organic matter in coal wastes from Upper Silesia, Poland

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Self-heating and self-combustion are currently taking place in some coal waste dumps in the Upper Silesian Coal Basin, Poland, e.g. the dumps at Rymer Cones, Starzykowiec, and the Marcel Coal Mine, all in the Rybnik area. These dumps are of similar age and self-heating and combustion have been occurring in all three for many years. The tools of organic petrography (maceral composition, rank, etc.), gas chromatography-mass spectrometry, and proximate and ultimate analysis are used to investigate the wastes. Organic matter occurs in quantities up to 85 vol.%, typically a few to several vol.%, in the wastes. All three maceral groups (vitrinite, liptinite, and inertinite) are present as unaltered and variously-altered constituents associated with newly-formed petrographic components (bitumen expulsions, pyrolytic carbon). The predominant maceral group is vitrinite with alterations reflected in the presence of irregular cracks, oxidation rims and, rarely, devolatilisation pores. In altered wastes, paler grey-vitrinite and/or coke dominates. The lack of plasticity, the presence of paler-coloured particles, isotropic massive coke, dispersed coked organic matter, and expulsions of bitumens all indicate that heating was slow and extended over a long time. Macerals belonging to other groups are present in unaltered form or with colours paler than the colours of the parent macerals. Based on the relative contents of organic compounds, the most important groups of these identified in the wastes are n-alkanes, acyclic isoprenoids, hopanes, polycyclic aromatic hydrocarbons (PAHs) and their derivatives, phenol and its derivatives. These compounds occur in all wastes except those most highly altered where they were probably destroyed by high temperatures. These compounds were generated mainly from liptinite-group macerals. Driven by evaporation and leaching, they migrated within and out of the dump. Their presence in some wastes in which microscopically visible organic matter is lacking suggests that they originated elsewhere and subsequently migrated through the dump piles. During their migration, the compounds fractionated, were adsorbed on minerals and/or interacted. The absence of alkenes, and of other unsaturated organic compounds, may reflect primary diagenetic processes that occurred in coals and coal shales during burial and/or organic matter type. Their absence may also be a consequence of heating that lasted many years, hydropyrolysis, and/or the participation of minerals in the reactions occurring within the dumps. The wastes contain compounds typical of organic matter of unaltered kerogen III type and the products of pyrolytic processes, and mixtures of both. In some wastes, organic compounds are completely absent having been destroyed by severe heating. The distributions of n-alkanes in many samples are typical of pyrolysates. In some wastes, narrow n-alkane distributions reflect their generation over small temperature ranges. In others, wider distributions point to greater temperature ranges. Other wastes contain n-alkane distributions typical of unaltered coal and high pristane content or mixtures of pyrolysates and unaltered waste material. The wastes also contain significant amounts of final α Β hopanes. Polycyclic aromatic hydrocarbons are represented only by two- to five-ring compounds as is typical of the thermal alteration of hard coal. Correlations between the degree of organic matter alteration and the relative contents of individual PAHs and hopanes and geochemical indicators of thermal alteration are generally poor. The properties of the organic matter (its composition and rank), temperature fluctuations within the dumps, migration of organic compounds and mineral involvement are probably responsible for this. The processes taking place in coal waste dumps undergoing self-heating and self-combustion are complicated; they are very difficult to estimate and define. The methods of organic petrology and geochemistry give complementary data allowing the processes to be described. However, each of the dumps investigated represents a separate challenge to be surmounted in any regional attempt to delineate the regional environmental impact of these waste dumps.
Słowa kluczowe
Czasopismo
Rocznik
Strony
105--237
Opis fizyczny
Bibliogr. 162 poz., fot., tab., wykr., rys.
Twórcy
  • University of Silesia, Faculty of Earth Science, ul. Będzińska 60, 41-200 Sosnowiec, Poland
Bibliografia
  • Allan, J., & Douglas, A.G. (1977). Variations in the content and distribution of n-alkanes in a series of carboniferous vitrinites and sporinites of bituminous rank. Geochimica et Comochimica Acta, 41(9), 1223-1230. DOI: 10.1016/0016-7037(77)90068-0.
  • Alonso, M.I., Valdés, A.F., Martínez-Tarazona, R.M., & Garcia, A.B. (2002). Coal recovery from fines cleaning wastes by agglomeration with colza oil: a contribution to the environment and energy preservation. Fuel Processing Technology, 75(2), 85-95. DOI: 10.1016/S0378-3820(01)00233-8.
  • Amijaya, H., Schwarzbauer, J., & Littke, R. (2006). Organic geochemistry of the Lower Suban coal seam, South Sumatra Basin, Indonesia: Paleoecological and thermal metamorphism implications. Organic Geochemistry, 37(3), 261-279. DOI: 10.1016/j.orggeochem.2005.10.012
  • Barosz, S. (2002). Monitoring of the dismantling and reclamation of the coal waste dumps. Proceedings - VII Conference "Long term proecological undertakings in the Rybnik Coal Area", October 2002 (pp. 149-156). Rybnik, (in Polish).
  • Barosz, S. (2003). Technical, economical and environmental conditions of management of coal waste dumps using the mines from the Rybnik Coal District as examples. Unpublished doctoral dissertation, Academy of Mining and Metallurgy, Cracow, Poland (in Polish).
  • Beamish, B.B., Barakat, M.A., & George, J.D. St. (2001). Spontaneous-combustion propensity of New Zealand coals under adiabatic conditions. International Journal of Coal Geology, 45(2-3), 217-224. DOI: 10.1016/S0166-5162(00)00034-3.
  • Beamish, B.B. (2005). Comparison of the R70 self-heating rate of New Zealand and Australian coals to Suggate rank parameter. International Journal of Coal Geology, 64(1-2), 139-144. DOI: 10.1016/j.coal.2005.03.012.
  • Bend, S.L., & Kosloski, D.M. (1993). A petrographic examination of coal oxidation. International Journal of Coal Geology, 24(1-4), 233-243. DOI: 10.1016/0166-5162(93)90012-Y.
  • Berkowitz, N. (1985). The chemistry of coal. Amsterdam-Oxford-New York-Tokyo: Elsevier.
  • Bishop, A.N., & Abbott, G.D. (1993). The interrelationship of biological maker maturity parameters and molecular yields during contact metamorphism. Geochimica et Cosmochimica Acta, 57(15), 3661-3668. DOI: 10.1016/0016-7037(93)90147-O.
  • Bishop, A.N., & Abbott, G.D. (1995). Vitrinite reflectance and molecular geochemistry of Jurassic sediments: the influence of heating by Tertiary dykes (northwest Scotland). Organic Geochemistry, 22(1), 165-177. DOI: 10.1016/0146-6380(95)90015-2.
  • Bojakowska, I., & Sokołowska, G. (2001). Polycyclic aromatic hydrocarbons in hard coals from Poland. Geological Quarterly, 45(1), 87-92.
  • Bray, E.E., & Evans, E.D. (1961). Distribution of n-parafins as a clue to recognition of source beds. Geochimica et Cosmochimica Acta, 22(1), 2-15. DOI: 10.1016/0016-7037(61)90069-2.
  • Brooks, K., Svanas, N., & Glasser, D. (1988). Evaluating the risk of spontaneous combustion in coal stockpiles. Fuel, 67(5), 651-656. DOI: 10.1016/0016-2361(88)90293-1.
  • Calemma, V., Del Piero, G., Rausa, R., & Girardi, E. (1995). Changes in optical properties of coals during air oxidation at moderate temperature. Fuel, 74(3), 383-388. DOI: 10.1016/0016-2361(95)93471-O.
  • Carras, J.N., Day, S.J., Saghafi, A., & Williams, D.J. (2009). Greenhouse gases emissions from low-temperature oxidation and spontaneous combustion at open-cut coal mines in Australia. International Journal of Coal Geology, 78(2), 161-168. DOI: 10.1016/j.coal.2008.12.001.
  • Chandra, D. (1962). Reflectivity and microstructure of weathered coals. Fuel, 41, 185-193.
  • Chemical Land 21. n-Alkanes. Retrieved May 10, 2011, from http://chemicalland21.com/industrialchem/organic/n-OCTADECANE.htm
  • Clayton, J.L., & Bostick, N.H. (1986). Temperature effects on kerogen and on molecular and isotropic composition of organic matter in Pierre Shale near an igneous dyke. Organic Geochemistry, 10(1-3), 135-143. DOI: 10.1016/0146-6380(86)90017-3.
  • Clemens, A.H., & Matheson, T.W. (1996). The role of moisture in the self - heating of low - rank coals. Fuel, 75(7), 891-895. DOI: 10.1016/0016-2361(96)00010-5.
  • Clemens, A.H., Matheson, T.W., & Rogers, D.E. (1991). Low temperature oxidation studies of dried New Zealand coals. Fuel, 70(2), 215-221. DOI: 10.1016/0016-2361(91)90155-4.
  • Cooper, J.R., Crelling, J.C., Rimmer, S.M., & Whittington, A.G. (2007). Coal metamorphism by igneous intrusion in the Raton Basin, CO and NM: Implications for generation of volatiles. International Journal of Coal Geology, 71(1), 15-27. DOI: 10.1016/j.coal.2006.05.007.
  • Cygankiewicz, J. (1996). Estimation of the development of self-ignition centers on the basis of the precise analysis of coal mine air samples. Scientific Papers of Central Mining Institute, Katowice, 14, 505-530 (in Polish).
  • Ćmiel, S., & Misz, M. (2005). Petrographic changes in coal caused by coal wastes fires. Proceedings - LXXVI Meeting of Polish Geological Society, 14-16 September, 2005 (pp. 43-50). Rudy near Rybnik. Polish Geological Institute, Polish Geological Society (Warsaw), (in Polish).
  • Didyk, B.M., Simoneit, B.R.T., Brassel, S.C., & Eglinton, G. (1978). Organic geochemical indicators of paleoenvironment conditions of sedimentation. Nature, 272, 216-222. DOI: 10.1038/272216a0.
  • Dzou, L.I.P., Noble, R.A., & Senftle, J.T. (1995). Maturation effects on absolute biomarker concentration in a suite of coals and associated vitrinite concentrates. Organic Geochemistry, 23(7), 681-697. DOI: 10.1016/0146-6380(95)00035-D.
  • Evans, K.A., Gandy, C.J., & Banwart, S.A. (2003). Mineralogical, numerical and analytical studies of the coupled oxidation of pyrite and coal. Mineralogical Magazine, 67(2), 381-398. DOI: 10.1180/0026461036720107
  • Fabiańska, M. (2007). Organic geochemistry of brown coals from the selected Polish basins. Katowice: Publisher of University of Silesia (in Polish).
  • Fabbri, D., Torri, C., Simoneit, B.R.T., Marynowski, L., Rushdi, A.I., Fabiańska, M.J. (2009). Levoglucosan and other cellulose and lignin markers in emissions from burning of Miocene lignites. Atmospheric Environment, 43(14), 2286-2295. DOI: 10.1016/j.atmosenv.2009.01.030.
  • Faksenss, L.G., & Brandvik, P.J. (2008). Distribution of water soluble components from Arctic marine oil spills - A combined laboratory and field study. Cold Regions Science and Technology, 54(2), 97-105. DOI: 10.1016/j.coldregions.2008.03.005.
  • Farrimond, P., Bevan, J.C., & Bishop, A.N. (1996). Hopanoid hydrocarbon maturation by an igneous intrusion. Organic Geochemistry, 25(3-4), 149-164. DOI: 10.1016/S0146-6380(96)00128-3.
  • Farrimond, P., Taylor, A., & Telenæs, N. (1998). Biomarker maturity parameters: the role of generation and thermal degradation. Organic Geochemistry, 29(5-7), 1181-1197. DOI: 10.1016/S0146-6380(98)00079-5.
  • Finkelman, R.B. (2004). Potential health impacts of burning coal beds and waste banks. International Journal of Coal Geology, 59(1-2), 19-24. DOI: 10.1016/j.coal.2003.11.002.
  • George, S.C. (1992). Effect of igneous intrusion on the organic geochemistry of a siltstone and an oil shale horizon in the Midland Valley of Scotland. Organic Geochemistry, 18(5), 705-723. DOI: 10.1016/0146-6380(92)90097-H.
  • Goodarzi, F. & Murchison, D.G. (1978). Influence of heating-rate on the anisotropy of carbonized vitrinites. Fuel, 57(5), 273-284. DOI: 10.1016/0016-2361(78)90004-2.
  • Goossens, H., Due, A., de Leeuw, J.W., van de Graaf, B., & Schenck, P.A. (1988a). The Pristane Formation Index, a new molecular maturity parameter. A simple method to assess maturity by pyrolysis/evaporation-gas chromatography of unextracted samples. Geochimica et Cosmochimica Acta, 52(5), 1189-1193. DOI: 10.1016/0016-7037(88)90272-4.
  • Goossens, H., de Lange, F., de Leeuw, J.W., & Schenck, P.A. (1988b). The Pristane Formation Index, a molecular maturity parameter. Confirmation in samples from the Paris Basin. Geochimica et Cosmochimica Acta, 52(10), 2439-2444. DOI: 10.1016/0016-7037(88)90301-8.
  • Grantham, P.J. (1986). Sterane isomerisation and moretane/hopane ratios in crude oils derived from Tertiary source rocks. Organic Geochemistry, 9(6), 293-304. DOI: 10.1016/0146-6380(86)90110-5.
  • Grice, K., Lu, H., Atahan, P., Asif, M., Hallmann, C., Greenwood, P., Maslen, E., Tulipani, S., Williford, K., & Dodson, J. (2009). New insights into the origin of perylene in geological samples. Geochimica et Cosmochimica Acta, 73(21), 6531-6543. DOI: 10.1016/j.gca.2009.07.029.
  • Grossman, S.L., Davidi, S., & Cohen, H. (1994). Emission of toxic and fire hazardous gases from open air coal stockpiles. Fuel, 73(7), 1184-1188. DOI: 10.1016/0016-2361(94)90257-7.
  • Hadden, R., & Rein, G. (2009). Ignition and suppression of smouldering coal fires in small-scale experiments. 6th Mediterranean Combustion Symposium, June 7-11, 2009. Ajaccio, Corsica, France. Retrieved May 10, 2011 ( http://www.see.ed.ac.uk/~grein/rein_papers/Hadden_SuppresingCoalfires_2009.pdf
  • Hadibarata, T. (2009). Oxidative degradation of benzo[a]pyrene by the ligninolytic fungi. In Y. Obayashi, T. Isobe, A. Subramanian, S. Suzuki, & S. Tanabe, (Eds.) Interdisciplinary Studies on Environmental Chemistry vol. 2 - Environmental Research in Asia for establishing a scientist's network (pp. 309-316). Tokyo: TERRAPUB.
  • Hanak, B., & Nowak, G. (2008). Thermally altered coals in self-combusted mine dump from Upper Silesia coal basin. Proceedings from International Conference on Coal and Organic Petrology ICCP-TSOP Joint Meeting, September 21-27, 2008 (p. 105). Oviedo, Spain.
  • Hatcher, P.G., & Clifford, D.J. (1997). The organic geochemistry of coal: from plant materials to coal. Organic Geochemistry, 27(5-6), 251-274. DOI: 10.1016/S0146-6380(97)00051-X.
  • Horsfield, B. (1989). Practical criteria for classifying kerogens: Some observations from pyrolysis-gas chromatography. Geochimica et Cosmochimica Acta, 53(4), 891-901. DOI: 10.1016/0016-7037(89)90033-1.
  • Hower, J.C., Henke, K., O'Keefe, J.M.K., Engle, M.A., Blake, D.R., & Stracher, G.B. (2009). The Tiptop coalmine fire, Kentucky: Preliminary investigation of the measurement of mercury and other hazardous gases from coal-fire gas vents. International Journal of Coal Geology, 80(1), 63-67. DOI: 10.1016/j.coal.2009.08.005.
  • Huizinga, B.J., Tannenbaum, E., & Kaplan, I.R. (1987). The role of minerals in the thermal alteration of organic matter. IV. Generation of n-alkanes, acyclic isoprenoids, and alkenes in laboratory experiments. Geochimica et Cosmochimica Acta, 51(5), 1083-1097. DOI: 10.1016/0016-7037(87)90202-X.
  • Ingram, G.R., & Rimstidt, J.D. (1984). Natural weathering of coal. Fuel, 63(3), 292-296. DOI: 10.1016/0016- 2361(84)90002-4.
  • International Committee for Coal and Organic Petrology (2001). New inertinite classification (ICCP system 1994). Fuel, 80(4), 459-471. DOI: 10.1016/S0016-2361(00)00102-2.
  • International Committee for Coal and Organic Petrology (1998). New vitrinite classification (ICCP system 1994). Fuel, 77(5), 349-358. DOI: 10.1016/S0016-2361(98)80024-0.
  • Ishiwatari, R., & Fukushima, K. (1979). Generation of unsaturated and aromatic hydrocarbons by thermal alteration of of young kerogen. Geochimica et Cosmochimica Acta, 43(8), 1343-1349. DOI: 10.1016/0016-7037(79)90124-8.
  • Itay, M., Hill, C.R. & Glasser, D. (1989). A study of the low temperature oxidation of coal. Fuel Processing Technology, 21(2), 81-97. DOI: 10.1016/0378-3820(89)90063-5.
  • Jiamo, F., Guoing, S., Jiayou, X., Eglington, G., Gowar, A.P., Ronfeng, J., Shanfa, F., & Pingan, P. (1990). Application of biological markers in the assessment of paleoenvironments of Chinese non-marine sediments. Organic Geochemistry, 16(4-6), 769-779. DOI: 10.1016/0146-6380(90)90116-H.
  • Jiang, C., Alexander, R., Kagi, R. I. & Murray, A.P. (1998). Polycyclic aromatic hydrocarbons in ancient sediments and their relationship to paleoclimate. Organic Geochemistry, 29(5-7), 1721-1735. DOI: 10.1016/S0146-6380(98)00083-7.
  • Jones, J.C. (2000). On the role of times to ignition in the thermal safety of transportation of bituminous coals. Fuel, 79(12), 1561-1562. DOI: 10.1016/S0016-2361(00)00003-X.
  • Kaymakçi, E., & Didari, V. (2002). Relations between coal properties and spontaneous combustion parameters. Turkish Journal of Engineering and Environmental Sciences, 26(1), 59-64.
  • Killops, S., & Killops, V. (2005). Introduction to organic geochemistry (2 ed.). Oxford: Blackwell Publishing.
  • Kotarba, M.J., & Clayton, J.L. (2003): A stable carbon isotope and biological marker study of Polish bituminous coals and carbonaceous shales. International Journal of Coal Geology, 55(2-4), 73-94. DOI: 10.1016/S0166-5162(03)00082-X.
  • Van Krevelen, D.W. (1993). Coal Typology - Chemistry - Physics - Constitution. Amsterdam: Elsevier.
  • Krishnaswamy S., Bhat S., Gunn R.D., & Agarwal P.K. (1996a). Low - temperature oxidation of coal. 1. Single - particle reaction - diffusion model. Fuel, 75(3), 333-343. DOI: 10.1016/0016-2361(95)00180-8.
  • Krishnaswamy, S., Agarwal, P.K., & Gunn, R.D. (1996b). Low - temperature oxidation of coal. 3. Modelling spontaneous combustion in coal stockpiles. Fuel, 75(3), 353-362. DOI: 10.1016/0016-2361(95)00249-9.
  • Kuenzer, C., Zhang, J., Tetzlaff, A., van Dijk, P., Voigt, S., Mehl, H., & Wagner, W. (2007). Uncontrolled coal fires and their environmental impact: Investigating two arid mining regions in north-central China. Applied Geography, 27(1), 42-62. DOI: 10.1016/j.apgeog.2006.09.007.
  • Kwiecińska, B., & Petersen, H.I. (2004). Graphite, semi-graphite, natural coke, and natural char classification - ICCP System. International Journal of Coal Geology, 57(2), 99-116. DOI: 10.1016/j.coal.2003.09.003.
  • Kwiecińska, B., Muszyński, M., Vleeskens, J., & Hamburg, G. (1995). Natural coke from the La Rasa Mine, Tineo, Spain. Mineralogia Polonica, 26(2), 3-14.
  • Kyin, B., Maung, A.T., Begum, B., Haque, M., Hemalika, S., & Sudrajat, T. (2009). Remediation of Polycyclic Aromatic Hydrocarbons polluted soils using Fenton's reagent. Journal of Applied Sciences in Environmental Sanitation, V(N), 63-68.
  • Liu, Ch., Li, S., Qiao, Q., Wang, J., & Pan, Z. (1998). Management of spontaneous combustion in coal mine waste tips in China. Water, Air, and Soil Pollution, 103(1-4), 441-444. DOI: 10.1023/A:1004922620264.
  • Liu, L., & Zhou, F. (2010). A comprehensive hazard evaluation system for spontaneous combustion of coal in underground mining. International Journal of Coal Geology, 82(1-2), 27-36. DOI: 10.1016/j.coal.2010.01.014.
  • Leif, R.N., & Simoneit, B.R.T. (2000). The role of alkenes produced during hydrous pyrolysis of a shale. Organic Geochemistry, 31(11), 1189-1208. DOI: 10.1016/S0146-6380(00)00113-3.
  • Lewan, M.D. (1992). Water as a source of hydrogen and oxygen in petroleum formation by hydrous pyrolysis. American Chemical Society, Division of Fuel Chemistry Preprints 37(4), 1643-1649.
  • Lewan, M.D. (1997). Experiments on the role of water in petroleum formation. Geochimica et Cosmochimica Acta, 61(17), 3691-3723. DOI: 10.1016/S0016-7037(97)00176-2.
  • Leythaeuser, D., & Schwarzkopf, Th. (1986). The pristane/n-heptadecane ratio as an indicator for recognition of hydrocarbon migration effects. Organic Geochemistry, 10(1-3), 191-197. DOI: 10.1016/0146-6380(86)90022-7.
  • Lu, P., Liao, G.X., Sun, J.H., & Li, P.D. (2004). Experimental research on index gas of the coal spontaneous at low-temperature stage. Journal of Loss Prevention in the Process Industries, 17(3), 243-247. DOI: 10.1016/j.jlp.2004.03.002.
  • Lu, S.-T., & Kaplan, I.R. (1992). Diterpanes, triterpanes, steranes, and aromatic hydrocarbons in natural bitumens and pyrolysates from different humic coals. Geochimica et Cosmochimica Acta, 56(7), 2761-2788. DOI: 10.1016/0016-7037(92)90358-P.
  • Machnikowska, H., Łuczak, A., & Kubacki, A. (2003). Effect of oxidation method on properties and structure of coals and lithotypes. Karbo 3, 157-164 (in Polish).
  • Mastalerz M., & Mastalerz K. (2000). Volcanic and post-volcanic hydrothermal activity in the Intrasudetic Basin, SW Poland: implications for mineralization. In: M. Glickson & M. Mastalerz (eds.), Organic Matter and Mineralization: Thermal Alteration, Hydrocarbon Generation and Role in Metallogenesis (pp. 185-203). Dordrecht: Kluwer Academic Publishers.
  • Mastalerz, M., Drobniak, A., & Schimmelmann, A. (2009). Changes in optical properties, chemistry and micropore and mesophase characteristics of bituminous coal at the contact with dikes in the Illinois Basin. International Journal of Coal Geology, 77(3-4), 310-319. DOI: 10.1016/j.coal.2008.05.014.
  • Mastalerz, M., Drobniak, A., Hower, J.C., & O'Keefe, J.M.K., (2010). Spontaneous combustion and coal petrology. In: G.B. Stracher, E.V. Sokol, & A. Prakash (Eds), Coal and Peat Fires: A Global Perspective: Volume 1: Coal - Geology and Combustion (pp. 47-62). Amsterdam: Elsevier.
  • Meyers, P.A., & Simoneit, B.R.T. (1999). Effects of extreme heating on the elemental and isotopic compositions of an upper cretaceous coal. Organic Geochemistry, 30(5), 299-305. DOI: 10.1016/S0146-6380(99)00015-7.
  • Miczajka, M. (2008). Information from the Chwałowice Coal Mine staff. Unpublished.
  • Misra, B.K., & Singh, B.D. (1994). Susceptibility to spontaneous combustion of Indian coals and lignites: an organic petrography authopsy. International Journal of Coal Geology, 25(3-4), 265-286. DOI: 10.1016/0166-5162(94)90019-1.
  • Misz, M., Fabiańska, M., & Ćmiel, S. (2007). Organic components in thermally altered coal waste: Preliminary petrographic and geochemical investigations. International Journal of Coal Geology, 71(4), 405-424. DOI: 10.1016/j.coal.2006.08.009.
  • Misz-Kennan, M., Kus, J., Flores, D., Avila, C., Christanis, K., Hower, J., Kalaitzidis, S., O'Keefe, J., Marques, M., Pusz, S., Ribeiro, J., Suárez-Ruiz, I., Sýkorová, I., Wagner, N., & Životić, D. (2009). Report of the 2009 Round Robin Exercise of the Self-heating of Coal and Coal Wastes Working Group. ICCP News Letter, 48, 58-60.
  • Misz-Kennan, M., & Fabiańska, M. (2010). Thermal transformation of organic matter in coal waste from Rymer Cones (Upper Silesian Coal Basin, Poland). International Journal of Coal Geology, 81(4), 343-358. DOI: 10.1016/j.coal.2009.08.009.
  • Misz-Kennan, M., & Tabor, A. (2011). The thermal history of selected coal waste dumps in the Upper Silesian Coal Basin (Poland). In G.B. Stracher, E.V. Sokol & A. Prakash (Eds.), Coal and Peat Fires: A Global Perspective, Volume 3 - Case Studies. Amsterdam: Elsevier, Scheduled for publication in 2011 (or early 2012).
  • Misz-Kennan, M., Gardocki, M., & Tabor, A. (2011a). Fire Prevention in Coal Waste Dumps as Exemplified by the Rymer Cones Dump (Upper Silesian Coal Basin, Poland). In G.B. Stracher, E.V. Sokol & A. Prakash (Eds.), Coal and Peat Fires: A Global Perspective, Volume 3 - Case Studies. Amsterdam: Elsevier, Scheduled for publication in 2011 (or early 2012).
  • Misz-Kennan, M., Fabiańska, M., & Ciesielczuk, J. (2011b). Thermal transformations of the waste rocks at the Starzykowiec coal waste dump, Poland. In G.B. Stracher, E.V. Sokol & A. Prakash (Eds.), Coal and Peat Fires: A Global Perspective, Volume 3 - Case Studies. Amsterdam: Elsevier, Scheduled for publication in 2011 (or early 2012).
  • Moghtaderi, B., Dlugogorski, B.Z., & Kennedy, E.M. (2000). Effect of wind flow on the self-heating characteristics of coal stockpiles. Process Safety and Environmental Protection, 78(6), 445-453. DOI: 10.1205/095758200530998.
  • Murchison, D. (2006). The influence of heating rates on organic matter in laboratory and natural environments. International Journal of Coal Geology, 67(3), 145-157. DOI: 10.1016/j.coal.2005.11.005
  • Ndaji, F.E., & Thomas, K.M. (1995). The effect of oxidation on the macromolecular structure of coals. Fuel, 74(6), 932-937. DOI: 10.1016/0016-2361(95)00019-2.
  • Nelson, C.R. (1989). Chemistry of coal weathering. Coal Science and Technology 14, Amsterdam, Oxford, New York, Tokyo: Elsevier.
  • Norgate C.M., Boreham C.J., & Wilkins A.J. (1999): Changes in hydrocarbon maturity indices with coal rank and type, Biller Coalfield, New Zealand. Organic Geochemistry, 30(8), 985-1010. DOI: 10.1016/S0146-6380(99)00082-0.
  • O'Keefe, J.M.K., Hanke, K.H., Hower, J.C., Engle, M.A., Stracher, G.B., Stucker, J.D., Drew, J.W., Staggs, W.D., Murray, T.M., Hammond III, M.L., Adkin, K.D., Mullins, B.J., & Lemley, E.W. (2010). CO2, CO, and Hg emissions from the Truman Shepherd and Ruth Mullins coal fires, eastern Kentucky, USA. Science of the Total Environment, 408(7), 1628-1633. DOI: 10.1016/j.scitotenv.2009.12.005.
  • Oros, D.R. & Simoneit, B.R.T. (2000). Identification and emission rates of molecular tracers in coal smoke particulate matter. Fuel, 79(5), 515-536. DOI: 10.1016/S0016-2361(99)00153-2.
  • Ourisson, G., Albrecht, P., & Rohmer, M. (1979). The hopanoids. Paleochemistry of a group of natural products. Pure and Applied Chemistry, 51(4), 709-729.
  • Pan, C., Geng, A., Zhong, N., Liu, J., & Yu, L. (2009). Kerogen pyrolysis in the presence and absence of water and minerals: Amounts and compositions of bitumen and liquid hydrocarbons. Fuel, 88(5), 909-919. DOI: 10.1016/j.fuel.2008.11.024.
  • Pan, C., Geng, A., Zhong, N., & Liu, J. (2010). Kerogen pyrolysis in the presence and absence of water and minerals: Steranes and triterpenoids. Fuel, 89(2), 336-345. DOI: 10.1016/j.fuel.2009.06.032.
  • Pancost, R.D., Baas, M., van Geel, B., & Sinninghe Damste, J.S. (2002). Biomarkers proxies for plant inputs to peats: an example from a sub-boreal ombrotrophic bog. Organic Geochemistry, 33(7), 675-690. DOI: 10.1016/S0146-6380(02)00048-7.
  • Parafiniuk, J., & Kruszewski, Ł. (2009). Ammonium minerals from burning coal-dumps of the Upper Silesian Coal Basin (Poland). Geological Quarterly, 53(3), 341-356.
  • Peters, K.E., Walters, C.C., & Moldowan, J.M. (2005). The Biomarker Guide. vol.2. Biomarkers and Isotopes in Petroleum Exploration and History. (2 ed.). Cambridge, New York, Melbourne: Cambridge University Press.
  • Pickering, R.W. (1999). A toxicological review of Polyaromatic Hydrocarbons. Journal of Toxicology: Cutaneous and Ocular Toxicology, 18(2), 101-135. DOI: 10.3109/15569529909037562.
  • Pickering, R.W. (2000). Toxicity of Polyaromatic Hydrocarbons other than benzo(a)pyrene: a review. Journal of Toxicology: Cutaneous and Ocular Toxicology, 19(1), 55-67. DOI: 10.3109/15569520009051478.
  • Pone, J.D.N., Hein, K.A.A., Stracher, G.B., Annegarn, H.J., Finkelman, R.B., Blake, D.R., McCormack, J.K., & Schroeder, P. (2007). The spontaneous combustion of coal and its by-products in the Witbank and Sasolburg coalfields of South Africa. International Journal of Coal Geology, 72(2), 124-140. DOI: 10.1016/j.coal.2007.01.001.
  • Radke, M. (1987). Organic geochemistry of aromatic hydrocarbons. In J. Brooks, D. Welte, (Eds.), Advances in Petroleum Geochemistry, vol. 2 (pp 141-205). London, Academic Press.
  • Radke, M., & Welte, D.H. (1983). The methylphenanthrene index (MPI): a maturity parameter based on aromatic hydrocarbons. In: M. Bjoroy, P. Albrecht, C. Cornford, K. de Groot, G. Eglinton, E. Galimov, D. Leythaeuser, R. Pelet & G. Speers (Eds), Advances in Organic Geochemistry 1981 (pp. 504-512). Chichester: John Wiley and Sons, Inc.
  • Radke, M., Willsch, H., Leythaeuser, D., & Teichmüller, M. (1982). Aromatic components of coal: relation of distribution pattern to rank. Geochimica et Cosmochimica Acta, 46(10), 1831-1848. DOI: 10.1016/0016-7037(82)90122-3.
  • Radke, M., Welte, D.H., & Willsch, H. (1986). Maturity parameters based on aromatic hydrocarbons: influence of organic matter type. Organic Geochemistry, 10(1-3), 51-63. DOI: 10.1016/0146-6380(86)90008-2.
  • Radke, M., Willsch, H., & Teichmüller, M. (1990). Generation and distribution of aromatic hydrocarbons in coals of low rank. Organic Geochemistry, 15(6), 539-563.
  • Radke, M., Rullkötter, J., & Vriend, S.P. (1994). Distribution of naphthalenes in crude oils from the Java Sea: Source and maturation effects. Geochimica et Cosmochimica Acta, 58(17), 3675-3689. DOI: 10.1016/0016-7037(94)90158-9.
  • Raymond, A.C., & Murchison, D.G. (1992). Effects of igneous activity on molecular-maturation indices in different types of organic matter. Organic Geochemistry, 18(5), 725-735. DOI: 10.1016/0146-6380(92)90098-I.
  • Ribeiro, J., Ferreira da Silva, E., & Flores, D. (2010). Burning of coal waste piles from Douro Coalfield (Portugal): Petrological, geochemical and mineralogical characterization. International Journal of Coal Geology, 81(4), 359-372. DOI: 10.1016/j.coal.2009.10.005.
  • Rimmer, S.M., Yoksoulian, L.E., & Hower, J.C. (2009). Anatomy of an intruded coal, I: Effect of contact metamorphism on whole-coal geochemistry, Springfield (No. 5) (Pennsylvanian) coal, Illinois Basin. International Journal of Coal Geology, 79(3), 74-82. DOI: 10.1016/j.coal.2009.06.002.
  • Rosiek, F., & Urbański, J. (1990). Influence of some physical properties of coal on their self-ignition. Wrocław: Scientific Publications of Mining Institute of Wrocław Technical University, 59, 27-32 (in Polish).
  • Querol, X., Izquierdo, M., Monfort, E., Alvarez, E., Font, O., Moreno, T., Alastuey, A., Zhuang, X., Lu, W., & Wang, Y. (2008). Environment characterization of burnt coal gangue banks at Yangquan, Shanxi Province, China. International Journal of Coal Geology, 75(2), 93-104. DOI: 10.1016/j.coal.2008.04.003.
  • Quintero, J.A., Candela, S.A., Rios, C.A., Montes, C., & Uribe, C. (2009). Spontaneous combustion of the Upper Paleocene Cerrejón Formation coal and generation of clinker in La Guajira Peninsula (Carribean Region of Colombia). International Journal of Coal Geology, 80(3-4), 196-210. DOI: 10.1016/j.coal.2009.09.004.
  • Sahu, H.B., Mahapatra, S.S., & Panigrahi, D.C. (2009). An empirical approach for classification of coal seams with respect to the spontaneous heating susceptibility of Indian coals. International Journal of Coal Geology, 80(3-4), 175-180. DOI: 10.1016/j.coal.2009.10.001.
  • Sawicki, T. (2004). Spontaneous combustion in stock piles as the cause of fire. Karbo, 1, 56-59 (in Polish).
  • Seifert, W.K., & Moldowan, J.M. (1978). Application of steranes, terpanes and monoaromatics to the maturation, migration and source of crude oils. Geochimica et Cosmochimica Acta, 42(1), 77-95. DOI: 10.1016/0016-7037(78)90219-3.
  • Seifert, W.K., & Moldowan, J.M. (1980). The effect of thermal stress on source-rock quality as measured by hopane stereochemistry. Physicas and Chemistry of Earth, 12, 229-237. DOI: 10.1016/0079-1946(79)90107-1.
  • Sensogut, C., & Cinar, I. (2000). A research on the tendency of Ermenek District coals to spontaneous combustion. Mineral Resources Engineering, 9(4), 421-427. DOI: 10.1142/S0950609800000342.
  • Shi, T., Wang, X., Deng, J., & Wen, Z. (2005). The mechanism at the initial stage of room-temperature oxidation of coal. Combustion and Flame, 140(4), 332-345. DOI: 10.1016/j.combustflame.2004.10.012.
  • Simoneit, B.R.T. (1998). Biomarker PAHs in the environment. In A.H. Neilson (Ed.). PAHs and related compounds. The handbook of environmental chemistry. vol. 3 Part 1 (pp.176-221). Berlin Heidelberg: Springer-Verlag.
  • Simoneit, B.R.T. (2002). Biomass burning — a review of organic tracers for smoke from incomplete combustion. Applied Geochemistry, 17(3), 129-162. DOI: 10.1016/S0883-2927(01)00061-0.
  • Singh A.K., Singh R.V.K., Singh M., Chandra H., & Shukla, N.K. (2007a). Mine fire gas indices and their application to Indian underground coal mine fires. International Journal of Coal Geology, 69(3), 192-204. DOI: 10.1016/j.coal.2006.04.004.
  • Singh, A.K., Singh, M.P., Sharma, M., & Srivastava, S.K. (2007b). Microstructures and mictrotextures of natural cokes: A case study of heat-affected coking coals from the Jharia coalfield, India. International Journal of Coal Geology, 71(2-3), 153-175. DOI: 10.1016/j.coal.2006.08.006.
  • Singh, A.K., Sharma, M., & Singh, M.P. (2008). Genesis of natural cokes: Some Indian examples. International Journal of Coal Geology, 75(1), 40-48. DOI: 10.1016/j.coal.2008.01.002.
  • Skarżyńska, K.M. (1995a): Reuse of coal mining wastes in civil engineering. Part 1: Properties of minestone. Waste Management, 15(1), 3-42. DOI: 10.1016/0956-053X(95)00004-J.
  • Skarżyńska, K.M. (1995b). Reuse of coal mining wastes in civil engineering. Part 2: Utilization of minestone. Waste Management, 15(2), 83-126. DOI: 10.1016/0956-053X(95)00008-N.
  • Skręt, U., Fabiańska, M.J., & Misz-Kennan, M. (2010). Simulated water-washing of organic compounds from self-heated coal wastes of the Rymer Cones Dump (Upper Silesia Coal Region, Poland). Organic Geochemistry 41(9), 1009-1012. DOI: 10.1016/j.orggeochem.2010.04.010.
  • Smith, M.A., & Glasser, D. (2005). Spontaneous combustion of carbonaceous stockpiles. Part II. Factors affecting the rate of the low-temperature oxidation reaction. Fuel, 84(9), 1161-1170. DOI: 10.1016/j.fuel.2004.12.005.
  • Sokol, E.V. (2005). High-temperature processes of organic fuel decomposition as a thermal source for pyrometamorphic transformations. In G.G. Lepezin (Ed.), Combustion metamorphism (pp. 22-31). Novosybirsk: Publishing House of the Siberian Branch of Russian Academy of Sciences (in Russian).
  • Stach, E., Mackowsky, M.-Th., Teichmüller, M., Taylor, G.H., Chandra, D., & Teichmüller, R. (1982). Stach's Textbook of Coal Petrology. Berlin: Gebrüder Borntraeger.
  • Stalker, L., Larter, S.R., & Farrimond, P. (1998). Biomarker binding into kerogens: evidence from hydrous pyrolysis using heavy water (D2O). Organic Geochemistry, 28(3-4), 239-253. DOI: 10.1016/S0146-6380(97)00103-4.
  • Steward, A.K., Massey, M., Padgett, P.L., Rimmer, S.M., & Hower, J.C. (2005). Influence of a basic intrusion on the vitrinite reflectance and chemistry of the Springfield (No. 5) coal, Harrisburg, Illinois. International Journal of Coal Geology, 63(1-2), 58-67. DOI: 10.1016/j.coal.2005.02.005.
  • Strachan, M.G., Alexander, R., van Bronswijk, W., & Kagi, R.I. (1989a). Source and heating rate effects upon maturity parameters based on ratios of 24-ethylcholestane diastereomers. Journal of Geochemical Exploration, 31(3), 285-294. DOI: 10.1016/0375-6742(89)90106-4.
  • Strachan, M.G., Alexander, R., Subroto, E.A., & Kagi, R.I. (1989b). Constraints upon the use of 24-ethylcholestane diastereomer ratios as indicators of the maturity of petroleum. Organic Geochemistry, 14(4), 423-432. DOI: 10.1016/0146-6380(89)90007-7.
  • Stracher, G.B. (ed.) (2007). Geology of coal fires: case studies from around the world. Reviews in Engineering Geology (pp. 283). XVIII, Colorado: The Geological Society of America, ISBN: 978-0-8137-4118-5.
  • Stracher, G.B., & Taylor, T.P (2004). Coal fires burning out of control around the world: thermodynamic recipe for environmental catastrophe. International Journal of Coal Geology, 59(1-2), 7-17. DOI: 10.1016/j.coal.2003.03.002.
  • Strumiński, A., & Rosiek, F. (1990). The evaluation of the endogenic fire-hazards in the Lower Silesian Coal Basin in the light of the tendency for the coal to self-ignite. Wrocław: Scientific Publications of Mining Institute of Wrocław Technical University, 59, 33-43 (in Polish).
  • Stukalova, I.E., & Rusinova, O.V. (2007). Thermal alteration of coal in the Khasyn coalfield, Magadan region, Russia. International Journal of Coal Geology, 71(4), 462-470. DOI: 10.1016/j.coal.2006.11.005.
  • Suárez-Ruiz I., & Crelling J. (2008). Applied Coal Petrology. The Role of Petrology in Coal Utilization. Amsterdam: Elsevier.
  • Sýkorová, I., Pickel, W., Christanis, K., Wolf, M., Taylor, G.H., & Flores, D. (2005). Classification of huminite—ICCP System 1994. International Journal of Coal Geology, 62(1-2), 85-106. DOI: 10.1016/j.coal.2004.06.006.
  • Szafer, M., Urbański, H., & Tabor, A. (1994). Rules for the re-cultivation of coal waste dumps using modern techniques. Katowice: Central Mining Institute (in Polish).
  • Tabor, A. (2002). Monitoring of coal waste dumps, re-cultivated dumps and other collection sites of Carboniferous waste rocks in the light of many years experience. Proceedings - VII Conference "Long term proecological undertakings in the Rybnik Coal Area", October 2002 (pp. 131-141). Rybnik, (in Polish).
  • Tabor, A. (1999). Technical - ecological problems in coal waste collection [in Polish]. Proceedings - IV Conference "Conditions in the local plans for land development in towns and communes of the Rybnik Coal Area", October 1999 (pp. 195-202). Rybnik, (in Polish).
  • Tabor, A. (2002-2009). Reports from the monitoring of coal waste dumps. Unpublished materials (in Polish).
  • Taylor G.H., Teichmüller M., Davis A., Diessel C.F.K., Littke R., & Robert R. (1998). Organic Petrology. A New Handbook incorporating some revised parts of Stach's Textbook of Coal Petrology. Berlin: Gebrüder Borntraeger.
  • Ten Haven, H.L., Littke, R., & Rullkötter, J. (1992). Hydrocarbon biological markers in Carboniferous coals of different rank. In J.M. Moldowan, P. Albrecht & R.P. Philp (Eds.). Biological markers in sediments and petroleum (pp. 142-154). New Jersey : Prentice Hall.
  • The Wiley/NBS Registry of Mass Spectral Data. Wiley, New York.
  • Tissot, B.P., & Welte, D.H. (1984). Petroleum Formation and Occurrence. Berlin: Springer Verlag.
  • Urbański J. (1983). Technical re-cultivation of mine waste dumps with particular reference to fire protection. Training Materials, Katowice: The Association of Mining Engineers and Technics (in Polish).
  • Wachowicz, J. (2008). Analysis of underground fires in Polish hard coal mines. Journal of China University of Mining and Technology, 18(3), 332-336. DOI: 10.1016/S1006-1266(08)60070-X.
  • Wagner M. (1980). Thermal alterations of bituminous coal in fire zones of mining dumps. Scientific Papers of Academy of Mining and Metallurgy, 6(2), 5-14.
  • Walker, S. (1999). Uncontrolled fires in coal and coal wastes. London: IEA Coal Research. (CCC/16). ISBN 92-9029-3247-1.
  • Wang, H., Dlugogorski, B.Z., & Kennedy, E.M. (1999). Experimental study on low-temperature oxidation of an Australian coal. Energy and Fuels, 13(6), 1173-1179. DOI: 10.1021/ef990040s.
  • Wang, H., Dlugogorski, B.Z., & Kennedy, E.M. (2002a). Examination of CO2, CO, and H2O formation during low-temperature oxidation of a bituminous coal. Energy and Fuels, 16(3), 586-592. DOI: 10.1021/ef010152v.
  • Wang H., Dlugogorski B.Z., & Kennedy E.M. (2002b). Thermal decomposition of solid oxygenated complexes formed by coal oxidation at low temperatures. Fuel, 81(15), 1913-1923. DOI: 10.1016/S0016-2361(02)00122-9.
  • Wang, H., Dlugogorski, B.Z., & Kennedy, E.M. (2003). Pathways for production of CO2 and CO in low - temperature oxidation of coal. Energy and Fuels, 17(1), 150-158. DOI: 10.1021/ef020095l.
  • Willey, C., Iwao, M., Castle, R.N., & Lee, M.L. (1981). Determination of sulfur heterocycles in coal liquids and shale oils. Analytical Chemistry, 53(3), 400-407. DOI: 10.1021/ac00226a006.
  • Willsch, H., & Radke, M. (1995). Distribution of polycyclic aromatic compounds in coals of high rank. Polycyclic Aromatic Compounds, 7(4), 231-251. DOI: 10.1080/10406639508009627.
  • Zhao, Y., Zhang, J., Chou, C.-L., Li, Y., Wang, Z., Ge, Y., & Zheng C. (2008). Trace element emission from spontaneous combustion of gob piles in coal mines, Shanxi, China. International Journal of Coal Geology, 73(1), 52-62. DOI: 10.1016/j.coal.2007.07.007.
  • Pyle, J. M., Spear, F. S., Rudnick, R. L., & McDonough, W. F. (2001). Monazite-Xenotime-Garnet Equilibrium in Metapelites and a New Monazite-Garnet Thermometer. Journal of Petrology, 42(11), 2083-2107. DOI: 10.1093/petrology/42.11.2083.
  • Pettijohn, F.J. (1957). Sedimentary Rocks (2 ed.). New York: Harper & Brothers.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-17f3cd3c-dd01-4d2f-8beb-ad23471d2042
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.