Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Changes in phytoplankton communities due to anthropogenic nutrient load and climate change often lead to eutrophication and harmful algal blooms that can affect biogeochemical cycling. However, little is known about the specific responses of various species to environmental variables. 17-year long data on the midsummer phytoplankton biomass in the Neva Estuary were analyzed to show the changes in the composition of phytoplankton in relation to water depth, transparence, salinity, temperature, concentrations of total phosphorus and chlorophyll a, and plankton primary production. One hundred seventy-four species and forms from eight taxonomic classes were found in phytoplankton. Fifteen species were potentially harmful. The most diverse and abundant groups were cyanobacteria, green algae and diatoms. Canonical Correspondence Analysis showed that the biomass of various species from each phytoplankton group correlated differently with environmental factors. However, within each group, there were some predominant trends in the correlative response to changes in environmental variables. The biomass of cyanobacteria was high in the middle and lower reaches of the estuary and, in general, positively correlated with water salinity. The biomass of most species of green algae and diatoms correlated negatively with it. These algae showed a positive trend in biomass in the upper and middle reaches of the estuary during the last decades that may be explained by changes in weather conditions. Taking into account that climate models predict future increases in precipitation and temperature in the northern Baltic, the future expansion of freshwater phytoplankton species in estuaries of the northern Baltic Sea is very likely.
Czasopismo
Rocznik
Tom
Strony
149--162
Opis fizyczny
Bibliogr. 68 poz., rys., tab., wykr.
Twórcy
autor
- Zoological Institute of Russian Academy of Sciences, St. Petersburg, Russian Federation
autor
- Zoological Institute of Russian Academy of Sciences, St. Petersburg, Russian Federation
autor
- Zoological Institute of Russian Academy of Sciences, St. Petersburg, Russian Federation
Bibliografia
- [1] Behrenfeld, M. J., O’Malley, R. T., Siegel, D. A., McClain, C. R., Sarmiento, J. L., Feldman, G. C., Milligan, A. J., Falkowski, P. G., Letelier, R. M., Boss, E. S., 2006. Climate-driven trends in contemporary ocean productivity. Nature 444, 752-755. https://doi.org/10.1038/nature05317.
- [2] Boyce, D. G., Lewis, M. R., Worm, B., 2010. Global phytoplankton decline over the past century. Nature 466, 591-596. https://doi.org/10.1038/nature09268.
- [3] Camarena-Gómez, M. T., Lipsewers, T., Piiparinen, J., Eronen-Rasimus, E., Perez-Quemaliños, D., Hoikkala, L., Sobrino, C., Spilling, K., 2018. Shifts in phytoplankton community structure modify bacterial production, abundance and community composition. Aquat. Microb. Ecol. 81, 149-170. https://doi.org/10.3354/ame01868.
- [4] Damar, A., Colijn, F., Hesse, K. J., Adrianto, L., Yonvither, Fahrudin, A., Kurniawan, F., Prismayanti, A. D., Rahayu, S. M., Rudianto, B. Y., Ramli, A., 2020. Phytoplankton Biomass Dynamics in Tropical Coastal Waters of Jakarta Bay, Indonesia in the Period between 2001 and 2019. J. Mar. Sci. Eng. 8 (9), 674. https://doi.org/10.3390/jmse8090674.
- [5] Doney, S. C., Ruckelshaus, M., Duffy, J. E., Barry, J. P., Chan, F., English, C. A., Galindo, H. M., Grebmeier, J. M., Hollowed, A. B., Knowlton, N., Polovina, J., Rabalais, N. N., Sydeman, W. J., Talley, L. D., 2012. Climate change impacts on marine ecosystems. Annu. Rev. Mar. Sci. 4, 11-37. https://doi.org/10.1146/annurev-marine-041911-111611.
- [6] Dzierzbicka-Głowacka, L., Jakacki, J., Janecki, M., Nowicki, A., 2011. Variability in the distribution of phytoplankton as affected by changes to the main physical parameters in the Baltic Sea. Oceanologia 53 (Suppl. 1), 449-470. https://doi.org/10.5697/oc.53-1-TI.449.
- [7] Friedland, R., Neumann, T., Schernewski, G., 2012. Climate change and the Baltic Sea action plan: model simulations on the future of the western Baltic Sea. J. Marine Syst. 105-108, 175-186. https://doi.org/10.1016/j.jmarsys.2012.08.002.
- [8] Gasiūnaitė, Z. R., Cardoso, A. C., Heiskanen, A.-S., Henriksen, P., Kauppila, P., Olenina, I., Pilkaityt, R., Purina, I., Razinkovas, A., Sagert, S., Schubert, H., Wasmund, N., 2005. Seasonality of coastal phytoplankton in the Baltic Sea: Influence of salinity and eutrophication. Estuar. Coast. Shelf Sci. 65 (1-2), 239-252. https://doi.org/10.1016/j.ecss.2005.05.018.
- [9] Gisselson, L.-Е., Carlsson, P., Graneli, E., Pallon, J., 2002. Dinophysis blooms in the deep euphotic zone of the Baltic Sea: do they grow in the dark? Harmful Algae 1 (4), 401-418. https://doi.org/10.1016/S1568-9883(02)00050-1.
- [10] Gobler, C. J., Doherty, O. M., Hattenrath-Lehmann, T. K., Griffith, A. W., Kang, Y., Litaker, R. W., 2017. Ocean warming since 1982 has expanded the niche of toxic algal blooms in the North Atlantic and North Pacific oceans. PNAS 114 (19), 4975-4980. https://doi.org/10.1073/pnas.1619575114.
- [11] Golubkov, M., Golubkov, S., 2020. Eutrophication in the Neva Estuary (Baltic Sea): response to temperature and precipitation patterns. Mar. Freshw. Res. 71 (6), 583-595. https://doi.org/10.1071/MF18422.
- [12] Golubkov, M., Nikulina, V., Golubkov, S., 2019a. Effects of environmental variables on midsummer dinoflagellate community in the Neva Estuary (Baltic Sea). Oceanologia 61 (2), 197-207. https://doi.org/10.1016/J.OCEANO.2018.09.001.
- [13] Golubkov, S. M., 2009. Changes of biological communities in the eastern Gulf of Finland during the last century. Proceedings of the Zoological Institute RAS 313, 406-418.
- [14] Golubkov, S., Alimov, A., 2010. Ecosystem changes in the Neva Estuary (Baltic Sea): natural dynamics or response to anthropogenic impacts? Mar. Pollut. Bull 61 (4-6), 198-204. https://doi.org/10.1016/j.marpolbul.2010.02.014.
- [15] Golubkov, S. M., Belyakov, V. P., Golubkov, M. S., Litvichuk, L. F., Petukhov, V. A., Gubelit, Yu. I., 2019b. Energy flows and phosphorus turnover in the system of shallow reservoir under anthropogenic stress. Russ. J. Ecol. 50, 560-566. https://doi.org/10.1134/S1067413619060055.
- [16] Golubkov, S., Golubkov, M., Tiunov, A., Nikulina, L., 2017. Long-term changes in primary production and mineralization of organic matter in the Neva Estuary (Baltic Sea). J. Mar. Syst. 171, 73-80. https://doi.org/10.1016/j.jmarsys.2016.12.009.
- [17] Golubkov, S. M., Golubkov, M. S., Tiunov, A. V., 2019. Anthropogenic carbon as a basal resource in the benthic food webs in the Neva Estuary (Baltic Sea). Mar. Pollut. Bull. 146, 190-200. https://doi.org/10.1016/j.marpolbul.2019.06.037.
- [18] Golubkov, M. S., Nikulina, V. N., Tiunov, A. V., Golubkov, S. M., 2020. Stable C and N Isotope Composition of Suspended Particulate Organic Matter in the Neva Estuary: The Role of Abiotic Factors, Productivity, and Phytoplankton Taxonomic Composition. J. Mar. Sci. Eng. 8 (12), 959. https://doi.org/10.3390/jmse8120959.
- [19] Grasshoff, K., Ehrhardt, M., Kremling, K., 1999. Methods of Seawater Analysis. Wiley-VCH, New York, 600 pp. (completely rev. And extended edn.).
- [20] Guiry, M. D., Guiry, G. M., 2020. AlgaeBase. World-wide electronic publication. National University of Ireland, Galway http://www.algaebase.org.
- [21] Hall Jr., R. O., Thomas, S., Gaiser, E. E., 2007. Measuring freshwater primary production and respiration. In: Fahey, T. J., Knapp, A. K. (Eds.), Principles and Standards for Measuring Primary Production. Oxford University Press, Oxford, 175-203.
- [22] Hallegraeff, G. M., Anderson, D. M., Cembella, A. D., Enevoldsen, H. O., (Eds), 2003. Manual on harmful marine microalgae, 2nd ed. UNESCO, Paris, 793 pp.
- [23] Heisler, J., Glibert, P. M., Burkholder, J. M., Anderson, D. M., Cochlan, W., Dennison, W. C., Dortch, Q., Gobler, C. J., Heil, C. A., Humphries, E., Lewitus, A., Magnien, R., Marshall, H. G., Sellner, K., Stockwell, D. A., Stoecker, D. K., Suddleson, M., 2008. Eutrophication and harmful algal blooms: a scientific consensus. Harmful Algae 8 (1), 3-13. https://doi.org/10.1016/j.hal.2008.08.006.
- [24] Henriksen, P., 2009. Long-term changes in phytoplankton in the Kattegat, the Belt Sea, the Sound and the western Baltic Sea. J. Sea Res. 61 (1-2), 114-123. https://doi.org/10.1016/j.seares.2008.10.003.
- [25] Holt, J., Schrum, C., Cannaby, H., Daewel, U., Allen, I., Artioli, Y., Bopp, L., Butenschon, M., Fach, B. A., Harle, J., Pushpadas, D., Salihoglu, B., Wakelin, S., 2016. Potential impacts of climate change on the primary production of regional seas: A comparative analysis of five European seas. Prog. Oceanogr. 140, 91-115. https://doi.org/10.1016/j.pocean.2015.11.004.
- [26] Holopainen, A.-L., Huttunen, P., Letanskaya, G. I., Protopopova, E. V., 1996. The trophic state of Lake Ladoga as indicated by late summer phytoplankton. Hydrobiologia 322, 9-16. https://doi.org/10.1007/BF00031799.
- [27] Holopainen, A.-L., Avinsky, V., Niinioja, R., 2006. Seasonal succession of phytoplankton in Lake Ladoga. Verh. Internat. Verein. Limnol. 29 (3), 1139-1142. https://doi.org/10.1080/03680770.2005.11902863.
- [28] Huisman, J., Weissing, F. J., 1999. Biodiversity of plankton by species oscillations and chaos. Nature 402, 407-410. https://doi.org/10.1038/46540.
- [29] Håkanson, L., Boulion, V. V., 2002. The Lake Foodweb — Modeling Predation and Abiotic/Biotic Interactions. Backhuys Publishers, Leinden, 344.
- [30] International Organization for Standardization (ISO), 2020. Country Codes — ISO 3166. Retrieved from https://www.iso.org/iso-3166-country-codes.html.
- [31] Jaanus, A., Andersson, A., Olenina, I., Toming, K., Kaljurand, K., 2011. Changes in phytoplankton communities along a north-south gradient in the Baltic Sea between 1990 and 2008. Boreal Env. Res. 16 (Suppl. A), 191-208.
- [32] Kahru, M., Elmgren, R., Kaiser, J., Wasmund, N., Savchuk, O., 2020. Cyanobacterial blooms in the Baltic Sea: Correlations with environmental factors. Harmful Algae 92, 101739. https://doi.org/10.1016/j.hal.2019.101739.
- [33] Kasperovičienė, J., Vaikutiene, G., 2007. Long-term changes in diatom communities of phytoplankton and the surface sediments in the Curonian Lagoon (Lithuanian part). Transit. Water. Bull. 1 (1), 27. https://doi.org/10.1285/i1825229Xv1n1p27.
- [34] Kiselev, I. A., 1954. The determinant of freshwater algae of the USSR. Soviet Science, Moscow 212 pp. (in Russian).
- [35] Klais, R., Tamminen, T., Kremp, A., Spilling, K., Olli, K., 2011. Decadal-scale changes of dinoflagellates and diatoms in the anomalous Baltic Sea spring bloom. PLoS ONE 6, e21567. https://doi.org/10.1371/journal.pone.0021567.
- [36] Knuuttila, S., Räike, A., Ekholm, P., Kondratyev, S., 2017. Nutrient inputs into the Gulf of Finland: Trends and water protection targets. J. Mar. Sys. 171, 54-64. https://doi.org/10.1016/j.jmarsys.2016.09.008.
- [37] Krevs, A., Koreiviene, J., Paskauskas, R., Sulijiene, R., 2007. Phytoplankton production and community respiration in different zones of the Curonian lagoon during the midsummer vegetation period. Transit. Water. Bull. 1 (1), 17-26. https://doi.org/10.1285/i1825229Xv1n1p17.
- [38] Kuosa, H., Fleming-Lehtinen, V., Lehtinen, S., Lehtiniemi, M., Nygård, H., Raateoja, M., Raitaniemi, J., Tuimala, J., Uusitalo, L., Suikkanen, S., 2017. A retrospective of the development of the Gulf of Bothnia ecosystem. J. Mar. Sys. 167, 78-92. https://doi.org/10.1016/j.jmarsys.2016.11.020.
- [39] Meier, H. E. M., Hordoir, R., Andersson, H. C., Dieterich, C., Eilola, K., Gustafsson, B. G., Höglund, A., Schimanke, S., 2012. Modeling the combined impact of changing climate and changing nutrient loads on the Baltic Sea environment in an ensemble of transient simulations for 1961-2099. Clim. Dynam. 39, 2421-2441. https://doi.org/10.1007/s00382-012-1339-7.
- [40] Myakisheva, N. V., 1996. The influence of seasonal and year-to-year variability of water discharge from the Ladoga-Neva River system on the salinity regime of the Baltic Sea. Hydrobiologia 322, 99-102. https://doi.org/10.1007/BF00031812.
- [41] Neumann, T., Schernewski, G., 2008. Eutrophication in the Baltic Sea and shifts in nitrogen fixation analyzed with a 3D ecosystem model. J. Marine Syst. 74 (1-2), 592-602. https://doi.org/10.1016/j.jmarsys.2008.05.003.
- [42] Nikulina, V. N., 2003. Seasonal dynamics of phytoplankton in the inner Neva Estuary in the 1980s and 1990s. Oceanologia 45 (1), 25-39.
- [43] Obolewski, K., Glińska-Lewczuk, K., Bąkowska, M., Szymańska, M., Mrozińska, N., 2018. Patterns of phytoplankton composition in coastal lakes differed by connectivity with the Baltic Sea. Sci. Total Environ. 631-632, 951-961. https://doi.org/10.1016/j.scitotenv.2018.03.112.
- [44] Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E., Wagner, H., 2020. Vegan: Community Ecology Package (Version 2.5-6) [Software]. Retrieved from https://CRAN.R-project.org/package=vegan.
- [45] Olenina, I., Hajdu, S., Edler, L., Andersson, A., Wasmund, N., Busch, S., Göbel, J., Gromisz, S., Huseby, S., Huttunen, M., Jaanus, A., Kokkonen, P., Ledaine, I., Niemkiewicz, E., 2006. Biovolumes and size-classes of phytoplankton in the Baltic Sea. BSEP 106, 1-144.
- [46] Pankov, H., 1976. Algenflora der Ostsee 1. Plankton. Fischer-Verlag, Stuttgart, 493 pp.
- [47] Pilkaitytė, R., 2007. Spring-summer transition in the Curonian lagoon (SE Baltic Sea) phytoplankton community. Transit. Water. Bull. 1 (1), 39-47. https://doi.org/10.1285/i1825229Xv1n1p39.
- [48] Piwosza, K., Całkiewicz, J., Gołębiewski, M., Creer, S., 2018. Diversity and community composition of pico- and nanoplanktonic protists in the Vistula River estuary (Gulf of Gdańsk, Baltic Sea). Estuar. Coast. Shelf Sci. 207, 242-249. https://doi.org/10.1016/j.ecss.2018.04.013.
- [49] Pliński, M., Jozwiak, T., 1999. Temperature and N:P ratio as factors causing blooms of blue-green algae in the Gulf of Gdansk (Poland). Oceanologia 41 (1), 73-80.
- [50] Purina, I., Labucis, A., Barda, I., Jurgensone, I., Aigars, J., 2018. Primary productivity in the Gulf of Riga (Baltic Sea) in relation to phytoplankton species and nutrient variability. Oceanologia 60 (4), 544-552. https://doi.org/10.1016/j.oceano.2018.04.005.
- [51] R Development Core Team. 2020. The R Project for Statistical Computing (Version 4.0.0) [Software]. Retrieved from http://www.r-project.org.
- [52] Sharov, A. N., Berezina, N. A., Nazarova, L. E., Poliakova, T. N., Chekryzheva, T. A., 2014. Links between biota and climate-related variables in the Baltic region using Lake Onega as an example. Oceanologia 56 (2), 291-306. https://doi.org/10.5697/OC.56-2.291.
- [53] Simola, H., Ollikainen, M., Sandman, O., 1993. Short-core palaeolimnology of three contrasting basins of Saimaa lake complex. Verh. Int . Ver. Limnol. 25 (2), 1082-1085. https://doi.org/10.1080/03680770.1992.11900328.
- [54] Spilling, K., Olli, K., Lehtoranta, J., Kremp, A., Tedesco, L., Tamelander, T., Klais, R., Peltonen, H., Tamminen, T., 2018. Shifting diatom-dinoflagellate dominance during spring bloom in the Baltic Sea and its potential effects on biogeochemical cycling. Front. Mar. Sci. 5, 327. https://doi.org/10.3389/fmars.2018.00327.
- [55] Stauffer, B. A., Sukhatme, G. S., Caron, D. A., 2020. Physical and Biogeochemical Factors Driving Spatially Heterogeneous Phytoplankton Blooms in Nearshore Waters of Santa Monica Bay, USA. Estuar. Coast 43, 909-926. https://doi.org/10.1007/s12237-020-00704-5.
- [56] Suikkanen, S., Laamanen, M., Huttunen, M., 2007. Long-term changes in summer phytoplankton communities of the open northern Baltic Sea. Estuar. Coast. Shelf Sci. 71 (3-4), 580-592. https://doi.org/10.1016/j.ecss.2006.09.004.
- [57] Ter Braak, C. J. F, Verdonschot, P. F. M., 1995. Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquat. Sci. 57, 255-289. https://doi.org/10.1007/BF00877430.
- [58] Telesh, I. V., Golubkov, S. M., Alimov, A. F., 2008. The Neva Estuary ecosystem. In: Schiewer, U. (Ed.), Ecology of Baltic Coastal Waters. Springer-Verlag, Berlin, 259-284. https://doi.org/10.1007/978-3-540-73524-3_12.
- [59] Teutschbein, C., Sponseller, R. A., Grabs, T., Blackburn, M., Boyer, E. W., Hytteborn, J. K., Bishop, K., 2017. Future riverine inorganic nitrogen load to the Baltic Sea from Sweden: An ensemble approach to assessing climate change effects. Global Biogeochem. Cy. 31 (11), 1674-1701. https://doi.org/10.1002/2016GB005598.
- [60] Tikkanen, T., 1986. Kasviplannktonpas. Suomen Luonnosujelun. Tuki Oy, Helsinki, 278 pp.
- [61] Ylöstalo, P., Seppälä, J., Kaitala, S., Maunula, P., Simis, S., 2016. Loadings of dissolved organic matter and nutrients from the Neva River into the Gulf of Finland — biogeochemical composition and spatial distribution within the salinity gradient. Mar. Chem. 186, 58-71. https://doi.org/10.1016/j.marchem.2016.07.004.
- [62] Vernet, M., Smith, R. C., 2007. Measuring and modeling primary production in marine pelagic ecosystems. In: Fahey, TJ, Knapp, AK (Eds.), Principles and Standards for Measuring Primary Production. Oxford University Press, Oxford, 142-174.
- [63] Vollenweider, R. A., 1969. A Manual on Methods for Measuring Primary Production in Aquatic Environments. Blackwell Scientific, Oxford, 213 pp.
- [64] Wasmund, N., 2017. The Diatom/Dinoflagellate Index as an Indicator of Ecosystem Changes in the Baltic Sea. 2. Historical Data for Use in Determination of Good Environmental Status. Front. Mar. Sci. 4 (153). https://doi.org/10.3389/fmars.2017.00153.
- [65] Wasmund, N., Tuimala, J., Suikkanen, S., Vandepitte, L., Kraberg, A., 2011. Long-term trends in phytoplankton composition in the western and central Baltic Sea. J. Marine Syst. 87 (2), 145-159. https://doi.org/10.1016/j.jmarsys.2011.03.010.
- [66] Wasmund, N., Kownacka, J., Göbel, J., Jaanus, A., Johansen, M., Jurgensone, I., Lehtinen, S., Powilleit, M., 2017. The Diatom/Dinoflagellate Indexasan Indicator of Ecosystem Changes in the Baltic Sea 1. Principle and Handling Instruction. Front. Mar. Sci. 4, 22. https://doi.org/10.3389/fmars.2017.00022.
- [67] Wetzel, R. G., Likens, G. E., 2000. Limnological Analyses. Springer, New York, 429 pp.
- [68] Wickham, H., Chang, W., Henry, L., Pedersen, Th. L., Takahashi, K., Wilke, C., Woo, K., Yutani, H., Dunnington, D., RStudio, 2020. ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics (Version 3.3.0) [Software]. Retrieved from https://cran.r-project.org/web/packages/ggplot2/index.html.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-17eac990-54b0-4556-8468-3293ca4c8fd1