PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An Empirical Functional Central Limit Theorem for weakly dependent sequences

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we obtain a Functional Central Limit Theorem for the empirical process of a stationary sequence under a new weak dependence condition introduced by Doukhan and Louhichi [5]. This result improves on the Empirical Functional Central Limit Theorem in Doukhan and Louhichi [5]. Our proof relies on new moment inequalities and on a Central Limit Theorem. Techniques of proofs come from Louhichi [12] and Rio [16], respectively. We also deduce a rate of convergence in a Marcinkiewicz-Zygmund Strong Law.
Rocznik
Strony
259--287
Opis fizyczny
Biblogr. 18 poz.
Twórcy
autor
  • Laboratoire de Statistique et Probabilités, UMR CNRS C5583, Université P.Sabatier, 118, route de Narbone, F-31062 Toulouse cedex, France
Bibliografia
  • [1] H. Berbee, Convergence rates in the strong law of bounded mixing sequences, Probab. Theory Related Fields 74 (1987), pp. 255-270.
  • [2] Y. S. Chow and T. L. Lai, Some one-sided theorems on the tail distribution of sample sums with applications to the last time and largest excess of boundary crossings, Trans. Amer. Math. Soc. 208 (1975), pp. 51-72.
  • [3] P. Doukhan, Models, inequalities and limit theorems for stationary sequences, in: Long Range Dependence, P. Doukhan, G. Oppenheim and M. Taqqu (Eds.), Birkhäuser, 2001.
  • [4] P. Doukhan and G. Lang, Rates in the empirical central limit theorem for stationary weakly dependent random fields, Preprint de ľUniversité de Cergy-Pontoise, May 2000.
  • [5] P. Doukhan and S. Louhichi, A new weak dependence condition and applications to moment inequalities, Stochastic Process. Appl. 84 (1999), pp. 313-342.
  • [6] P. Doukhan and S. Louhichi, Functional estimation of a density under a new weak dependence condition, Scand. J. Statist. 28 (2) (2001), pp. 325-342.
  • [7] P. Doukhan and F. Portal, Moments de variables aléatoires mélangeantes, C. R. Acad. Sci. Paris, Sér. 1, 297 (1983), pp. 129-132.
  • [8] L. Giraitis, P. Kokoszka and R. Leipus, Stationary ARCH models: dependence structure and Central Limit Theorem, Econometric Theory 16 (01) (2001), pp. 3-22.
  • [9] T. L. Lai, Convergence rates and r-quick versions of the strong law for stationary mixing sequences, Ann. Probab. 5 (5) (1977), pp. 693-706.
  • [10] S. Louhichi, Théorèmes limites pour des suites positivement ou faiblement dèpendantes, Thèse, Université de Paris Sud, 1998.
  • [11] S. Louhichi, Rates of convergence in the CLT for some weakly dependent random variables, Theory Probab. Appl. (1999).
  • [12] S. Louhichi, Independence via uncorrelatedness, examples and moment inequalities, Préprint de ľUniversité Paris 11, 2000.
  • [13] F. A. Moricz, R. J. Serfling and W. F. Stout, Moment and probability bounds with quasi-superadditive structure for the maximum partial sum, Ann. Probab. 10 (4) (1982), pp. 1032-1040.
  • [14] E. Rio, Inégalités de moments pour les suites stationnaires et fortement mélangeantes, C. R. Acad. Sei. Paris, Sér. 1, 318 (1994), pp. 355-360.
  • [15] E. Rio, About the Lindeberg method for strongly mixing sequences, ES AIM, www.emath.fr/ps/, Vol. 1 (1995), pp. 35-61.
  • [16] E. Rio, Sur le théorème de Berry-Esseen pour les suites faiblement dépendantes, Probab. Theory Related Fields 104 (1996), pp. 255-282.
  • [17] Q. M. Shao and H. Yu, Weak convergence for weighted empirical processes of dependent sequences, Ann. Probab. 24 (4) (1996), pp. 2098-2127.
  • [18] C. S. Withers, Central Limit Theorems for dependent variables, Z. Wahrsch. verw. Gebiete 57 (1981), pp. 509-534. Corrigendum: ibidem 63 (1983), p. 555.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-17e02ed8-8737-4f22-ad2e-e2c0bfe6da72
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.