PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development of a Vibration Isolator on the Basis of a Magneto-Rheological Elastomer

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Magnetorheological elastomers (MREs) are smart materials. Their rheological properties can be controlled by applying an external magnetic field. MRE is a solid rubbery material that can change its modulus through the application of a magnetic field. This article presents the research on the simulation, manufacturing, and testing of vibration insulators. The first step in MRE vibration isolator design. A sufficient magnetic field for the stiffness change is considered in the material selection of the vibration isolator. The effectiveness of electromagnetic circuits in generating magnetic fields to minimize vibration is demonstrated using Finite Element Method Magnetics software. A vibration isolator test rig is installed as a second step. Lastly, different effects of current input on MRE isolators have been examined. The higher current input is more effective in eliminating vibration using the MRE isolation system.
Słowa kluczowe
Twórcy
  • Department Electrical Engineering, Faculty of Engineering, University of Widyagama Malang, Indonesia
  • Department Electrical Engineering, Faculty of Engineering, University of Widyagama Malang, Indonesia
  • Department Mechanical Engineering, Faculty of Engineering, University of Sebelas Maret, Indonesia
  • Department Mechanical Engineering, Faculty of Engineering, University of Sebelas Maret, Indonesia
  • Department Mechanical Engineering, Faculty of Engineering, University of University of Widyagama Malang, Indonesia
  • Faculty of Vocational, State University of Malang, Indonesia
Bibliografia
  • 1. Holl H.J., Vibration amplitude reduction applying suitable variable excitation frequency. Materials Today: Proceedings, 2023, 93, 785–790.
  • 2. Nawafleh M., Al-Kloub, Tarawneh M., and Younesd R., Reduction of vibration of industrial equipment. JJMIE, 2010, 4(4).
  • 3. Persson P., Vibrations in a built environment: Prediction and Reduction, 2016.
  • 4. Peng J., Wang Q., and Zhang Y., Vibration problems and application of vibration reduction system in engineering. In: Proc. of 3rd International Conference on Mechanical, Control and Computer Engineering (ICMCCE), IEEE, 2018, 26–30.
  • 5. Jin S. et al., Magnetorheological elastomer base isolation in civil engineering: a review. Journal of Infrastructure Intelligence and Resilience, 2023, 2(2), 100039.
  • 6. Fu J., Liu G., Fan C., Liu Z., and Luo H., Design and experimental study on vibration reduction of a UAV lidar using rubber material. presented at the Actuators, MDPI, 2022, pp. 345.
  • 7. Hidalgo Signes C., Martínez Fernández P., Medel Perallón E., and Insa Franco R., Analysis of the vibration alleviation of a new railway sub-ballast layer with waste tire rubber. Materials and Structures, 2017, 50, 1–13,.
  • 8. Cui S., Liu B., Zhou Y., Liu C., Wang Y., and Xiao J., Development of magnetorheological elastomer railway pads with a tunable stiffness/damping property for railway fastening systems,. Frontiers in Materials, 2023, 9, 1107193.
  • 9. Islam M.S., Khan F.M., and Hossain M.Z., Vibration reduction of an excavator bucket using attachment technique. International Review of Mechanical Engineering, 2020, 14(7), 414-423.
  • 10. Itu C., Vlase S., and Marin M., A vibration analysis of the rubber inertial dampers used in electrical vehicles. Polymers, 2022, 14(5), 953.
  • 11. Gong L. et al., Experimental study and modeling of rubber joints for railway vehicles using magnetorheological shear stiffening elastomers. Smart Materials and Structures, 2023, 32(9), 095032.
  • 12. Soleimanian S., Petrone G., Franco F., De Rosa S., and Kołakowski P., Semi-active vibroacoustic control of vehicle transmission systems using a metal rubber-based isolator. Applied Acoustics, 2024, 217, 109861.
  • 13. Jawale P., Mache A., Chhatlani C., Wagh O., and Pandit S., Identification of low vibration damping areas on automotive door panel and improvement using natural fibers. SAE Technical Paper, 2024, 148–7191.
  • 14. Awati S.S. and Todkar A.S., Recent trends in reduction of hand-arm vibration syndrome for agricultural handheld equipment: A review based on challenges and future directions. Noise & Vibration Worldwide, 2024, 55(5-7), 281-295.
  • 15. Perales-Martínez et al., Magnetic and viscoelastic response of magnetorheological elastomers based on a combination I.A. of iron nano-and microparticles. Polymers, 2023, 15(18), 3703.
  • 16. Bastola A.K. and Hossain M., A review on magneto-mechanical characterizations of magnetorheological elastomers. Composites Part B: Engineering, 2020, 200, 108348.
  • 17. Masa’id A., Lenggana B.W., Ubaidillah U., Susilo D.D., and Choi S.-B., A review on vibration con- trol strategies using magnetorheological materials actuators: Application perspective. In: Actuators, MDPI, 2023, p. 113.
  • 18. Priyandoko G. and Suwandono P., Development of vibration isolator using magnetorheological elastomer material based. Journal of Applied Engineering Science, 2021, 19(4), 1108–1113.
  • 19. Kang S.S., Choi K., Nam J.-D., and Choi H.J., Magnetorheological elastomers: Fabrication, characteristics, and applications. Materials, 2020, 13(20), 4597.
  • 20. Bastola A.K., Paudel M., Li L., and Li W., Recent progress of magnetorheological elastomers: a review. Smart Materials and Structures, 2020, 29(12), 123002,.
  • 21. Hosseini S.S. and Marzbanrad J., Robust H∞ controller in an MRF engine mount for improving the vehicle ride comfort. International Journal of Acoustics and Vibration, 2020, 25(2), 219–225.
  • 22. Huang S.-C., Some discussions of MR engine mount on vibration attenuation and force transmission. In: Proc. of 21st International Congress on Sound and Vibration. Beijing/China, 2014.
  • 23. Karagöz M. and Tuncay B., An engine mount design and vibration analysis. International Journal of Automotive Science and Technology, 2020, 4(3), 164–170,.
  • 24. Chen Z. et al., Investigation of a new metamaterial magnetorheological elastomer isolator with tunable vibration band gaps. Mechanical Systems and Signal Processing, 2022, 170, 108806.
  • 25. Lin D., Yang F., Gong D., and Li R., A new vibration isolator integrating tunable stiffness-damping and active driving properties based on radial-chains magnetorheological elastomer. Mechanical Systems and Signal Processing, 2023,183, 109633.
  • 26. Nguyen X.B., Komatsuzaki T., and Truong H.T., Novel semiactive suspension using a magnetorheological elastomer (MRE)-based absorber and adaptive neural network controller for systems with input constraints. Mechanical Sciences, 2020, 11(2), 465–479.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-17d99e43-43ff-403b-8c85-ff1d4080290a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.