PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Magnetic memory inspection of an overhead crane girder : experimental verification

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The safety and efficiency of material handling systems involve periodical inspections and evaluation of transportation device technical conditions. That is particularly important in case of industrial cranes, since they are subjected to a large impact load and mechanical stresses acting on the crane's structure and equipment. The paper considers the possibility of a crane structure inspection using the metal magnetic memory (MMM) method. As an advanced non-destructive technique, this method can be employed for inspection of crane structure during operation, which leads to reduce the down time costs and increase the safety confidence in the monitoring process. The MMM technique is effective for early identification of the possible defect location and detecting the micro-damage in ferromagnetic structures through detecting the stress concentration areas. The basic principle of MMM method is the self-magnetic flux leakage signal that correlates with the degree of stress concentration. This method allows detecting early damage of ferromagnetic material through performing measurement in the earth magnetic field, without the use of a special magnetizing device. The paper presents the experimental results carried out on the double-girder overhead travelling crane with hoisting capacity 1000 kg. The influence of the load variation and duration time on the intensity of the self-magnetic flux leakage signal is analysed and discussed.
Twórcy
  • AGH University of Science and Technology Faculty of Mechanical Engineering and Robotics Mickiewicza Av. 30, 30-059 Krakow, Poland tel.: +48 12 6173104
  • AGH University of Science and Technology Faculty of Mechanical Engineering and Robotics Mickiewicza Av. 30, 30-059 Krakow, Poland tel.: +48 12 6173104
  • AGH University of Science and Technology Faculty of Mechanical Engineering and Robotics Mickiewicza Av. 30, 30-059 Krakow, Poland tel.: +48 12 6173104
Bibliografia
  • [1] Bao, S., Fu, M, Hu, S., Lou, H., A review of the metal magnetic memory technique, 35th International Conference on Ocean, Offshore and Arctic Engineering, Materials Technology, Vol. 4, No. OMAE2016-54269, Busan, South Korea 2016.
  • [2] Dong, L. H., Xu, B. S., Dong, S. Y., Chen, Q. Z., Wang, D., Stress dependence of the spontaneous stray field signals of ferromagnetic steel, NDT & E International, 42 (4), pp. 323-327, 2009.
  • [3] Dubov, A. A., Principal features of metal magnetic memory method and inspection tools as compared to known magnetic NDT methods, Montreal World Conference on Non Destructive Testing, August 2004.
  • [4] Juraszek, J., Innovative non-destructive testing methods, Monography ATH, University of Bielsko-Białą, Poland 2013.
  • [5] Juraszek, J., Residual magnetic field non-destructive testing of gantry cranes, Materials, 12 (564), pp. 1-11, 2019.
  • [6] Juraszek, J., Residual magnetic field for identification of damage in steel wire rope, Archives of Mining Sciences, 64 (1), pp. 79-92, 2019.
  • [7] Kosoń-Schab, A., Smoczek, J., Szpytko, J., Crane frame inspection using metal magnetic memory method, Journal of KONES Powertrain and Transport, Vol. 23, No. 2, pp. 185-191, 2016.
  • [8] Kosoń-Schab, A., Smoczek, J., Szpytko, J., Wpływ naprężeń wywołanych obciążeniem belki na poziom własnego pola magnetycznego badanego za pomocą metody magnetycznej pamięci metalu, Hutnik Wiadomości Hutnicze, T. 83, Nr 12, pp. 532-535, 2016.
  • [9] Roskosz, M., Witoś, M., Żurek, Z. H., Fryczowski, K., Porównanie możliwości diagnostycznych metod magnetycznej pamięci metalu, szumu Barkhausena i niskoczęstotliwościowej impedancji, Przegląd Spawalnictwa, Vol. 88 (10), pp. 57-62, 2016.
  • [10] Szpytko, J., Hyla, P., Kosoń-Schab, A., Smoczek, J., Selected measurement and control techniques: experimental verification on a lab-scaled overhead crane, Journal of KONES: Powertrain and Transport, Vol. 24, No. 3, pp. 299-308, 2017.
  • [11] Wang, Z. D., Yao, K., Ding, K. Q., Quantitative study of metal magnetic memory signal versus local stress concentration, NDT & E International, 43 (6), pp. 513-518, 2010.
  • [12] Wang, Z. D., Yao, K., Ding, K. Q., Theoretical studies of metal magnetic memory technique on magnetic flux leakage signals, NDT & E International, 43 (4), pp. 354-359, 2010.
  • [13] Witoś, M., Zieja, M., Kurzyk, B., IT Support of NDE and SHM with Application of the Metal Magnetic Memory Method, 7th International Symposium on NDT in Aerospace, Bremen 2015.
  • [14] Yao, K., Deng, B., Wang, Z. D., Numerical studies to signal characteristics with the metal magnetic memory-effect in plastically deformed samples, NDT & E International, 47, pp. 7-17, 2012.
  • [15] Zhang Y., Yang S., Xu, X., Application of metal magnetic memory test in failure analysis and safety evaluation of vessels, Frontiers of Mechanical Engineering in China, Vol. 4, No. 1, pp. 40-48, 2009.
  • [16] Zhang, Y. L., Zhou, D., Jiang, P. S., Zhang, H. C., The state-of-the-art surveys for application of metal magnetic memory testing in remanufacturing, Advanced Materials Research, Vol. 301-303, pp. 366-372, 2011.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-17d5cc9f-4322-4b95-89a2-030dff63d8e3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.