PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization design of multistage pump impeller based on response surface methodology

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The central composite design of the response surface methodology is applied to optimize ge- ometrical parameters of a multistage pump impeller in this paper, and a relevant experiment was conducted. The maximum head difference is 5.6%, and the maximum efficiency differ- ence is 0.73%, which can ensure the accuracy of the investigation. Meanwhile, 30 groups of test schemes are obtained based on the software Design Expert, and the numerical calcula- tion of each scheme is conducted. According to the calculation results and variance analysis, it is found that the effect of response variables of the primary terms blade number, impeller outlet diameter, blade outlet width, and the quadratic terms between the blade number and impeller outlet diameter, blade number and blade wrap angle, impeller outlet diameter and blade outlet width on the head are significant. However, the primary term blade wrap an- gle, the quadratic terms between the blade number and blade outlet width, impeller outlet diameter and blade wrap angle, blade wrap angle and blade outlet width have no significant effect on the head. Furthermore, a response surface regression model of the single-stage im- peller head of a multistage pump was established after removing insignificant factors, and the deviation of the response surface regression model is only 2.4%. The significant sequence of the influence of response variables on the head is the blade number, impeller diameter, blade outlet width, and blade wrap angle. Finally, the optimal geometrical parameters of the impeller are obtained: the number of blades is 6, the diameter of the impeller is 254 mm, the blade wrap angle is 119◦, the outlet width of the blade is 4.3 mm, and the predicted value of the head is 189.19 m. Therefore, the influence rule of impeller geometrical parameters on the head was obtained, which can provide theoretical references for the optimization design of the multistage pump impeller.
Rocznik
Strony
595--609
Opis fizyczny
Bibliogr. 13 poz., rys., tab.
Twórcy
  • Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang, China
autor
  • Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang, China
autor
  • Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang, China
  • Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang, China
autor
  • Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang, China
Bibliografia
  • 1. Benturki M., Dizene R., Ghenaiet A., 2018, Multi-objective optimization of two-stage centrifugal pump using NSGA-II algorithm, Journal of Applied Fluid Mechanics, 11, 4, 929-942.
  • 2. Gan X., Pei J., Wang W., Yuan S., Tang Y., 2020, Multi-component optimization of a vertical inline pump based on multi-objective pso and artificial neural network, Journal of Mechanical Science and Technology, 34, 12, 4883-4896.
  • 3. Nitri Asomani S., Yuan J., Wang L., Appiah D., Adu-Poku K.A., 2020, The impact of surrogate models on the multi-objective optimization of Pump-As-Turbine (PAT), Energies, 13, 9, 2271.
  • 4. Peng G., Huang X., Zhou L., Zhou G., Zhou H., 2020, Solid-liquid two-phase flow and wear analysis in a large-scale centrifugal slurry pump, Engineering Failure Analysis, 114, 104602.
  • 5. Ping X., Yang F., Zhang H., Zhang J., Zhang W., Song G., 2021, Introducing machine learning and hybrid algorithm for prediction and optimization of multistage centrifugal pump in an ORC system, Energy, 222, 120007.
  • 6. Shim H.S., Kim K.Y., 2020, Design optimization of the impeller and volute of a centrifugal pump to improve the hydraulic performance and flow stability, Journal of Fluids Engineering, 142, 10.
  • 7. Thakkar S., Vala H., Patel V., Patel R., 2021, Performance improvement of the sanitary centrifugal pump through an integrated approach based on response surface methodology, multi-objective optimization and CFD, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 43, 1, 1-15.
  • 8. Tong S., Zhao H., Liu H., Yu Y., Li J., Cong F., 2020, Multi-objective optimization of multistage centrifugal pump based on surrogate model, Journal of Fluids Engineering, 42, 1, 011101.
  • 9. Wang L., Nitri Asomani S., Yuan J., Appiah D., 2020, Geometrical optimization of pump-as-turbine (PAT) impellers for enhancing energy efficiency with 1-D theory, Energies, 13, 16, 4120.
  • 10. Xu K., Wang G., Wang L., Yun F., Sun W., Wang K., Chen X., 2020, Parameter Analysis and Optimization of Annular Jet Pump Based on Kriging Model, Applied Sciences, 10, 21, 7860.
  • 11. Xu K., Wang G., Zhang L., Wang L., Yun F., Sun W., Wang K., Chen X., 2021, Multi-objective optimization of jet pump based on RBF neural network model, Journal of Marine Science and Engineering, 9, 2, 236.
  • 12. Yang P., Liu Y., Zhong G.-Y., 2016, Prediction and parametric analysis of acoustic streaming in a thermoacoustic Stirling heat engine with a jet pump using response surface methodology, Applied Thermal Engineering, 103, 1004-1013.
  • 13. Zhang L., Davila G., Zangeneh M., 2021, Multi-objective optimization of a high specific speed centrifugal volute pump using three-dimensional inverse design coupled with computational fluid dynamics simulations, Journal of Fluids Engineering, 143, 2.
Uwagi
„Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).”
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-17d58a88-24d7-4a5d-8cfa-b18f75403643
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.