PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simulation of Gamboeng Tea Product Manufacturing Process and Their Role in Reducing Environmental Impact

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study offers an overview of how changing habits in consuming a cup of tea can contribute to make better environment. As the initial existing scenario, survey for picturing Indonesian consumers in preparing their cup of tea from dried leaves was conducted to urban and suburban citizens. According to the survey, both respondent groups were using LPG as the first choice in boiling water for preparing tea, followed by using an electric dispenser as the second choice. This habit causes CO2 emission from processing a cup of tea by Indonesian consumer was 24 g CO2-eq per cup of tea, excluding the tea organic waste. The portion of CO2 emission from boiling water in tea preparation was 41.93% of whole CO2 emission from plantation to served cup. The emission can be significantly reduced by converting dried tea (initial scenario) into the ready-to-drink product, in the form of powdered tea (second scenario) and boxed tea (third scenario). This study simulated an integrated system of tea product manufacturing system with biogas utilization produced from tea organic waste. Simulation conducted based on daily manufacturing process at the Gamboeng green tea factory. Additional required energies were simulated from the wood pellet, which is the best practice in the Gamboeng Tea factory. By shifting tea consuming habit from dried tea to powdered tea and/or boxed tea, the emission from a cup of tea can be reduced, with range of reduction varied from 8.87 g to 22.13 g CO2-eq per cup of tea. If the Gamboeng green tea daily production capacity of the factory is fully converted into powdered tea, the potency of CO2 emission reduction reaches 26.92 metric ton CO2. However, the factory should pay attention to providing the water for the manufacturing process. The required water was 45.23 m3 of drinking water if all dried tea converted to powdered tea. Moreover, 11.53 m3 of water is required as irrigation for the biogas process in converting all tea organic waste into biogas.
Słowa kluczowe
Twórcy
  • Research Center for Chemistry, Indonesian Institute of Sciences (LIPI), Kawasan Puspiptek, Serpong, Tangerang Selatan, Indonesia, phone: +62 21 756 0929
  • Graduate School of Sciences and Engineering, University of Tsukuba, Tsukuba, Japan
  • Research Center for Policy and Management of Science, Technology and Innovation, Indonesian Institute of Sciences (LIPI), Jl. Gatot Subroto 10, Jakarta Selatan, Indonesia
  • Research Institute for Tea and Cinchona, Mekarsari, Gambung, Bandung, Indonesia
  • Research Center for Policy and Management of Science, Technology and Innovation, Indonesian Institute of Sciences (LIPI), Jl. Gatot Subroto 10, Jakarta Selatan, Indonesia
  • Research Institute for Tea and Cinchona, Mekarsari, Gambung, Bandung, Indonesia
  • Research Institute for Tea and Cinchona, Mekarsari, Gambung, Bandung, Indonesi
  • Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
  • Research Center for Policy and Management of Science, Technology and Innovation, Indonesian Institute of Sciences (LIPI), Jl. Gatot Subroto 10, Jakarta Selatan, Indonesia
  • Research Center for Chemistry, Indonesian Institute of Sciences (LIPI), Kawasan Puspiptek, Serpong, Tangerang Selatan, Indonesia
  • Research Center for Policy and Management of Science, Technology and Innovation, Indonesian Institute of Sciences (LIPI), Jl. Gatot Subroto 10, Jakarta Selatan, Indonesia
  • Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
Bibliografia
  • Aksay, M.V., Ozkaymak, M., and Calhan, R. (2018). Codigestion of Cattle Manure and Tea Waste for Biogas Production, International Journal of Renewable Energy Research, 8, 3.
  • Azapagic, A., Bore, J., Cheserek, B., Kamunya, S., and Elbehri, A. (2016). The global warming potential of production and consumption of Kenyan tea, J. Clean. Prod., 112, 4031–4040.
  • Bardant, T.B., Haq, M.S., Setiawan, A.A.R., Harianto, S., Waluyo, J., Mastur, A.I., Lestari, A.D., Sujarwo, Sulaswatty, A., and Wiloso, E.I. (2018a). The renewability indicator and cumulative degree of perfection for gamboeng tea; Part.1, exergy calculation of fresh tea leaf, E3S Web of Conferences, 74(December), 79–89, doi: e3sconf/20187407003.
  • Bardant, T.B., Haq, M.S., Setiawan, A.A.R., Harianto, S., Waluyo, J., Mastur, A.I., Lestari, A.D., Sujarwo, Sulaswatty, A., and Wiloso, E.I. (2018b). The Renewability Indicator and Cumulative Degree of Perfection for Gamboeng Tea; Part.2, Exergy Calculation of Tea Factory, J. Kim. Terap. Indones., 20(2), 79–89, doi: 10.1051/e3sconf/20187407003.
  • Berners-Lee, M., and Clark, D. (2019). What’s the carbon footprint of ... a cup of tea or coffee? https://www.theguardian.com/environment/green-livingblog/2010/jun/17/carbon-footprint-of-tea-coffee.
  • Chandra, S.A., and Pratiwi, F. (2020). Norwegia Beri RI Rp 812 M atas Penurunan Emisi Karbon, https://republika.co.id/berita/qd1ral457/norwegiaberi-ri-rp-812-m-atas-penurunan-emisi-karbon.
  • Chen, L.C., and Yang, T. (2011). Carbon Footprint Study of Organic Tea Product. J. TungNan Univ, 37, 203– 214.
  • Evers, D.P., Gadkari, V.V, and Linden, C.J. (2009). Sustainability assessment of flexible packaging, Flexible Packaging Association.
  • Farshad, S.F., Hamed, K., Mahmoud, G.N., and Chen, G. (2018). Cradle to grave environmental-economic analysis of tea life cycle in Iran. J. Clean. Prod, 196, 953–960.
  • Haryanto, S. (2019). Karakteristik Pelet Kayu dari LImbah Pangkasan Teh Berdasarkan Besaran Partikel, Jurnal Penelitian Teh Dan Kina, Desember.
  • Hašková, S. (2017). Holistic Assessment and Ethical Disputation on a New Trend in Solid Biofuels, Science and Engineering Ethics, 23(2), 509–519.
  • Hu, A.H., Chen, C.-H., Huang, L. H., Chung, M.-H., Lan, Y.-C., and Chen, Z. (2019). Environmental Impact and Carbon Footprint Assessment of Taiwanese Agricultural Products: A Case Study on Taiwanese Dongshan Tea, Energies, MDPI, 12, 1, 1–13.
  • Manyuchi, M.M., Mbohwa, C., and Muzenda, E. (2018). Biogas and Bio solids Production from Tea Waste through Anaerobic Digestion, Proceedings of the International Conference on Industrial Engineering and Operations Management Paris, France, July 26–27.
  • Markwardt, S., Wellenreuther, F., Drescher, A., Harth, J., and Busch, M. (2017). Comparative Life Cycle Assessment of Tetra Pak R carton packages and alternative packaging systems for liquid food on the Nordic market, ifeu Wilckensstraße 3 D – 69120.
  • Maroušek, J. (2014). Economically oriented process optimization in waste management. Environmental Science and Pollution Research, 21, 12, 7400–7402.
  • Maroušek, J. (2015). Processing of residues from biogas plants for energy purposes, Clean Technologies and Environmental Policy, 17, 3, 797–801.
  • Munasinghe, M., Deraniyagala, Y., Dassanayake, N., and Karunarathna, H. (2017). Economic, social and environmental impacts and overall sustainability of the tea sector in Sri Lanka, Sustain. Prod. Consum, 12, 155–169.
  • Pelvan, E., and Özilgen, M. (2017). Assessment of energy and exergy efficiencies and renewability of black tea, instant tea and ice tea production and waste valorization processes, Sustainable Production and Consumption, 12, 59–77.
  • Prasetia, H., Setiawan, A.A.R., Bardant, T.B., Muryanto Randy, A., Haq, M.S., Mastur, A.I., Harianto, S., Annisa, N., and Sulaswatty, A. (2020). Studi Pola Konsumsi Teh di Indonesia untuk Mendukung Diversifikasi Produk yang Berkelanjutan (A Study of Tea Consumption Pattern in Indonesia Toward Sustainable Product Diversification). Biopropal Industri, 11, 2, 107, doi: 10.36974/jbi.v11i2.6249.
  • Pukka (2018). Pukka sustainability FY 2018.
  • Setiawan, A.A.R., Sulaswatty, A., Haq, M.S., Utomo, T.H.A., Randy, A., Arutanti, O., Agustian, E., Wiloso, E.I., and Haryono, A. (2019). A study on ecolabeling and Life Cycle Assessment for food products in Indonesia: Potential application to improve the competitiveness of the tea industry. IOP Conference Series: Earth and Environmental Science, 277, 1, doi: 10.1088/1755-1315/277/1/012026.
  • Song, H. and Gao, X. (2018). Green supply chain game model and analysis under revenue-sharing contract. Journal of Cleaner Production, 170, 183–192.
  • Swedish Lifecycle Center (2019). Value chain hotspot, https://www.lifecyclecenter.se/explore/valuechainhot spot.
  • Wiloso, E.I., Setiawan, A.A.R., Prasetia, H., Muryanto, Wiloso, A.R., Subyakto, Sudiana, I.M., Lestari, R., Nugroho, S., Hermawan, D., Fang, K., and Heijungs, R. (2020). Production of sorghum pellets for electricity generation in Indonesia: A life cycle assessment, Biofuel Research Journal, 7, 3, 1178–1194, doi: 10.18331/BRJ2020.7.3.2.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-17cf6aa2-b513-491b-95f8-8fc752b8365f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.