PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructure and fatigue life of Cp-Ti/316L bimetallic joints obtained by means of explosive welding

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper describes a study of explosively welded, commercially pure titanium-stainless steel 316L plates. Following welding, the plates were heat-treated at the temperature of 600°C for 90 minutes. Examinations of the bond structure were carried out before and after heat treatment to investigate the processes taking place during explosive welding of materials. Observations were performed using light, scanning electron (SEM) and transmission electron microscopy (TEM). The mechanical properties were examined applying three-point bending tests with cyclic loads. Fractographic examination and hardness measurements were also performed. It has been found that the bonding zones are characterized by a specific microstructure, chemical composition and microhardness. The heat treatment used in the study increases the relative volume of brittle intermetallic phases, causing a reduction in fatigue strength of the joint.
Rocznik
Strony
925--933
Opis fizyczny
Bibliogr. 41 poz., rys., wykr., tab.
Twórcy
autor
  • Military University of Technology, Faculty of Mechanical Engineering, Warsaw, Poland, 2 Gen. Urbanowicza Street, 00-908 Warsaw, Poland
autor
  • Military University of Technology, Faculty of Mechanical Engineering, Warsaw, Poland, 2 Gen. Urbanowicza Street, 00-908 Warsaw, Poland
  • Military University of Technology, Faculty of Mechanical Engineering, Warsaw, Poland, 2 Gen. Urbanowicza Street, 00-908 Warsaw, Poland
autor
  • Military University of Technology, Faculty of Mechanical Engineering, Warsaw, Poland, 2 Gen. Urbanowicza Street, 00-908 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Materials Science and Engineering, 141 Wołoska Street, Warsaw, Poland
Bibliografia
  • [1] J. Song, A. Kostka, M. Veehmayer, and D. Raabe, “Hierarchial microstructure of explosive joints: Example of titanium to steel cladding”, Mat. Sci. Eng. A-Struct. 528, 2641‒2647 (2011).
  • [2] H. Dyja, A. Maranda, and R. Trąbiński, Technologie wybuchowe w inżynierii materiałowej, Wydawnictwo Wydziału Metalurgii Inżynierii Materiałowej Politechniki Częstochowskiej, Częstochowa, 2001.
  • [3] D.M. Fronczek, R. Chulist, L. Litynska-Dobrzynska, G.A. Lopez, A. Wierzbicka-Miernik, N. Schell, Z. Szulc, and J. Wojewoda--Budka, “Microstructural and Phase Composition Differences Across the Interfaces in Al/Ti/Al Explosively Welded Clads”, Metall. Mater. Trans. A 48 (9), 4154–4165 (2017).
  • [4] M. Blicharski, Inżynieria powierzchni, Wydawnictwo WNT, Warszawa, 2012.
  • [5] A. Klimpel, Napawanie i natryskiwanie cieplne, Wydawnictwo WNT, Warszawa, 2000.
  • [6] C. Senderowski, Żelazowo-aluminiowe intermetaliczne systemy powłokowe uzyskiwane z naddźwiękowego strumienia metalizacyjnego, BEL Studio, Warszawa, 2015.
  • [7] S. Dittrick, V.K. Balla, S. Bose, and A. Bandyopadhyay, “Wear performance of laser processed tantalum coatings”, Mater. Sci. Eng. C Mater. Biol. Appl. 31 (8), 1832–1835 (2011).
  • [8] B. Song, K.T. Voisey, and T. Hussain, “High temperature chlorine induced corrosion of Ni50Cr coating: HVOLF, HVOGF, cold spray and laser cladding”, Surf. Coat. Tech. 337, 357–369 (2018).
  • [9] H. Xiao, Z. Qi, C. Yu, and C. Xu, “Preparation and properties for Ti/Al clad plates generated by differential temperature rolling”, J. Mater. Process. Tech. 249, 285‒290 (2017).
  • [10] O. Grydin, G. Gerstein, F. Nürnberger, M. Schaper, and V. Danchenko, “Twin-roll casting of aluminum–steel clad strips”, J. Manuf. Process. 15 (4), 501‒507 (2013).
  • [11] K. Topolski, P. Wieciński, Z. Szulc, A. Gałka, and H. Grabacz, “Progress in the characterization of explosively joined Ti/Ni bimetals”, Mater. Design 63, 479‒487 (2014).
  • [12] I.N. Maliutina, V.I. Mali, K.A. Skorokhod, and A.A. Bataev, “Effect of Heat-Treatment on the Interface Microstructure of Explosively Welded Stainless Steel – Bronze Composite”, Appl. Mech. Mater. 698, 495‒500 (2015).
  • [13] T.Z. Blazynski, Explosive Welding, Forming and Compaction, Applied Science, London, 1983.
  • [14] F. Findik, “Recent developments in explosive welding”, Mater. Design 32, 1081‒1093 (2011).
  • [15] L. Cizek, D. Ostroushko, E. Mazancova, and M. Wachowski, “Structure and Properties of Sandwich material Steel Cr13Ni10 + Ti after Explosive Cladding”, Metallurgical Journal 62, 6 (2009).
  • [16] R. Kosturek, M. Najwer, P. Nieslony, and M. Wachowski, “Effect of Heat Treatment on Mechanical Properties of Inconel 625/Steel P355NH Bimetal Clad Plate Manufactured by Explosive Welding”, Lect. N. Mech. Eng., 681‒686 (2018).
  • [17] Y. Kaya and N. Kahraman, “An investigation into the explosive welding/cladding of Grade A ship steel/AISI 316L austenitic stainless steel”, Mater. Design 52, 367‒372 (2013).
  • [18] I.A. Bataev, T.S. Ogneva, A.A. Bataev, V.I. Malia, M.A. Esikova, D.V. Lazurenkoa, Y. Guo, and A.M. Jorge Junior, “Explosively welded multilayer Ni–Al composites”, Mater. Design 88, 1082‒1087 (2015).
  • [19] R. Ma, Y. Wang, J. Wu, and M. Duan, “Investigation of microstructure and mechanical properties of explosively welded ITERgrade 316L(N)/CuCrZr hollow structural member”, Fusion Eng. Des. 93, 43‒50 (2015).
  • [20] W. Babul, Odkształcanie metali wybuchem, Wydawnictwo WNT, Warszawa, 1980.
  • [21] S. Saravanan and K. Raghukandan, “Thermal kinetics in explosive cladding of dissimilar metals”, Sci. Technol. Weld. Jo. 17 (2), 99‒103 (2012).
  • [22] M. Prażmowski, D. Rozumek, and H. Paul, “Static and fatigue tests of bimetal Zr-steel made by explosive welding”, Eng. Fail. Anal. 75, 71–81 (2017).
  • [23] L. Liu, Y.F. Jia, and F.Z. Xuan, “Gradient effect in the waved interfacial layer of 304L/533B bimetallic plates induced by explosive welding”, Mat. Sci. Eng. A-Struct. 704, 493–502 (2017).
  • [24] M. Wachowski, M. Gloc, T. Ślęzak, T. Płociński, and K.J. Kurzydłowski, “The Effect of Heat Treatment on the Microstructure and Properties of Explosively Welded Titanium-Steel Plates”, J. Mater. Eng. Perform. 26, 945‒954 (2017).
  • [25] M. Gloc, H. Słomińska, and Ł. Ciupiński, “Hydrogen Influence on Microstructure and Properties of Novel Explosive Welded Corrosion Resistant Clad Materials”, Defect Diffus. Forum 382, 167‒172 (2018).
  • [26] R. Kacar and M. Acarer, “An investigation on the explosive cladding of 316L stainless steel-din-P355GH steel”, J. Mater. Process. Tech. 152 (1), 91‒96 (2004).
  • [27] M. Laurent, R. Estevez, D. Fabrègue, and E. Ayax, “Thermomechanical fatigue life prediction of 316L compact heat exchanger”, Eng. Fail. Anal. 68, 138‒149 (2016).
  • [28] B.J. Jin, J.P. Lee, M.H. Park, T.J. Yun, Y.H. Song, and I.S. Kim, “A Study on Forming for Plate-Type Heat Exchangers of the Ti Material”, Procedia Engineer. 174, 171‒178 (2017).
  • [29] A.A. Berdychenko, L.B. Pervukhin, and O.L. Pervukhina, “Evolution of Titanium structure in the zone of the joint formed by explosive welding”, Met. Sci. Heat. Treat.+ 51, 9‒10 (2009).
  • [30] Y. Kaya, N. Kahraman, A. Durgutlu, and B. Gulenc, “Investigation of the Microstructural, Mechanical and Corrosion Properties of Grade A Ship Steel-Duplex Stainless Steel Composites Produced via Explosive Welding”, Metall. Mater. Trans. A 48 (8), 3721–3733 (2017).
  • [31] N. Kahraman, B. Gulenc, and F. Findik, “Joining of titanium/stainless steel by explosive welding and effect on interface”, J. Mater. Process. Tech. 169, 127–133 (2005).
  • [32] H. Liqing, L. Guobiao, W. Zidong, Z. Hong, F. Feng, and Y. Long, “Study on Corrosion Resistance of 316L Stainless Steel Welded Joint”, Rare Metal. Mat. Eng. 39 (3), 393‒396 (2010).
  • [33] M. Tršo, M. Benák, M. Turňa, and P. Nesvadba, “Structural Stability of Composite Materials Prepared by Explosion Welding After Their Heat Treatment”, Defect Diffus. Forum 297‒301, 1171‒1176 (2010).
  • [34] R. Kacar and M. Acarer, “An investigation on the explosive cladding of 316L stainless steel-din-P355GH steel”, J. Mater. Process. Tech. 152 (1), 91‒96 (2004).
  • [35] S.A.A. Akbari Mousavi, S.T.S. Al.-Hassani, and A.G. Atkins, “Bond strength of explosively welded specimens”, Mater. Design 29 (7), 1334‒1352 (2008).
  • [36] W. Walczak, “Characteristic features of joints in some explosively welded metals and alloys”, Welding International 12, 953‒958 (1998).
  • [37] W. Babul and S. Ziemba, Materiały wybuchowe w technologicznych procesach obróbki tworzyw, Państwowe Wydawnictwo Naukowe, Warszawa, 1972.
  • [38] W. Walczak, Zgrzewanie wybuchowe metali i jego zastosowania, Wydawnictwo WNT, Warszawa, 1989.
  • [39] A.A. Ezra, Principles and practices of explosive metalworking, Industrial Newspaper, London, 1973.
  • [40] A. Nobili, T. Masri, and M. C. Lafont, Recent Developments In Characterization of a Titanium-Steel Explosion Bond Interface, Proceedings of Reactive Metals in Corrosive Applications Conference, Albany OR, 1999.
  • [41] N. Kahraman and B. Gülenç, “Microstructural and mechanical properties of Cu-Ti plates bonded through explosive welding process”, J. Mater. Process. Tech. 169 (1), 67‒71 (2005).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-17c87b2b-dd4d-4e26-8951-1afb70e7df3e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.