
Copyright: Wyższa Szkoła Logistyki, Poznań, Polska                                                                                     

Citation: Skitsko V., Voinikov M., 2020. Solving four-index transportation problem with the use of a genetic algorithm. 

LogForum 16 (3), 397-408, http://doi.org/10.17270/J.LOG.2020.493  

Received: 11.05.2020,  Accepted: 09.06.2020,   on-line: 30.06.2020. 

 

 

   LogForum 
     > Scientific Journal  of  Logistics < 

    http://www.logforum.net           p-ISSN 1895-2038  

2020, 16 (3), 397-408 

http://doi.org/10.17270/J.LOG.2020.493  

        e-ISSN 1734-459X                     
  

ORIGINAL PAPER 

SOLVING FOUR-INDEX TRANSPORTATION PROBLEM WITH THE 

USE OF A GENETIC ALGORITHM  

Volodymyr Skitsko, Mykola Voinikov 

Kyiv National Economic University named after Vadym Hetman, Kyiv, Ukraine 

ABSTRACT. Background: Under conditions of digital transformation, the effective decision-making process should 

involve the usage of different mathematical models and methods, one of which is the transportation problem. The 

transportation problem, as the problem of resource allocation, is applicable in such domains as manufacturing, 

information technologies, etc. To get more precise solutions, the multi-index transportation problem can be applied, 

which allows taking into account several variables. 

Methods: This paper develops an approach for applying the genetic algorithm for solving four-index transportation 

problems. 

Results: The steps of the genetic algorithm for solving four-index transportation problems are outlined. The research has 

proved the steps of the genetic algorithm to be the same for all four-index transportation problem types, except for the 

first step (initialization), which is described for every type of transportation problem separately. 

Based on the theoretical results, the program implementation of the genetic algorithm for solving four-index symmetric 

transportation problems has been developed with the open-source programming language typescript. 

Conclusions: The paper promotes the application of the genetic algorithm for solving multi-index transportation 

problems. The investigated problem requires comprehensive studies, specifically, on the influence of change different 

parameters of the genetic algorithm (population size, the mutation, and crossover rates, etc.) on the efficiency of the 

algorithm in solving four-index transportation problems. 

Key words: four-index transportation problem, symmetric transportation problem, genetic algorithm, program 

implementation. 

 

 

INTRODUCTION 

Under conditions of digital transformation, 

effective decision-making in management is 

possible to achieve with the use of different 

economic models and methods, which can be 

based either on classic approaches and tools or 

cutting-edge ones, for example, algorithms of 

collective intelligence, evolutionary 

algorithms, etc. The transportation problem as 

the problem of resource allocation in different 

domains such as manufacturing, information 

technologies, for example, when building 

communication networks or hardware and 

software resources sharing in cloud computing 

stays relevant until today. 

The omnipresent usage of digital 

technologies is enabling the collection of large 

amounts of data, which can make the decision-

making process more efficient. Besides, the 

increasing complexity of mathematical 

methods and models, on the one hand, is 

allowing using large amounts of data to make 

decisions more precise, and on the other hand, 

the number of computation increases as well 

and can affect the time needed to implement 

them. However, the evolution of computing 

hardware lets to solve complicated problems in 

an adequately short time. The problems, which 
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were known earlier, but required numerous 

computations, got a second wind, one of which 

is the multi-index transportation problem. 

LITERATURE REVIEW 

Multi-index transportation problems are the 

extension of classic two-index transportation 

problems. Diverse researches have been 

devoted to multi-index transportation 

problems. One of the present complete reviews 

of multi-index transportation problems and 

their extensions is done in work [Singh et al. 

2016]. 

The most common extensions of the multi-

index transportation problem are taking into 

account fuzzy parameters and multiple 

objectives. For instance, multi-index 

transportation problems with fuzzy parameters 

are studied in [Kumar, Yadav 2012, Senapati 

2018]; multi-objective multi-index 

transportation problems have been researched 

by [El-Shorbagy et al. 2020, Singh et al. 2018]; 

in work [Javadi et al. 2014] the research on 

handling several objectives in solving logistics 

problems is performed. 

The application of a genetic algorithm in 

solving logistics problems, in particular, 

transportation and distribution ones, has been 

studied in the following studies [Dimov and 

Lukyanov 2016, El-Shorbagy et al. 2020, Indra 

et al. 2020, Javadi et al. 2014, Kaedure 

Bakhuet 2016, Karthy, Ganesan 2018, Thu 

Huyen et al. 2013, Yun et al. 2020]. 

The authors [Karthy, Ganesan 2018] 

suggest initializing the population with Vogel's 

approximation method. Additionally, the 

special mutation operator is introduced, which 

is applied after each crossover and serves 

a function of returning the chromosome to the 

feasible region. [Dimov, Lukyanov 2016, 

Kaedure Bakhuet 2016] propose the algorithm 

for initializing the initial population. In [Thu 

Huyen et al. 2013], described the solving of 

classical transportation problem with the use of 

a genetic algorithm. 

The authors [Ritha, Vinotha 2012] propose 

the heuristic method for solving the triaxial 

transportation problem and describe the steps 

of the solving process. 

In those works, different approaches to 

solving the transportation problems are 

proposed, in particular, with the use of 

a genetic algorithm. However, some aspects of 

solving multi-index transportation problems 

with the use of a genetic algorithm are not 

studied enough in modern literature. 

Additionally, to get practical results, it is 

essential to implement the algorithm, for 

example, programmatically, which can reveal 

new information to the researcher. The paper 

aims to describe the overall steps for solving 

four-index problems of different types with a 

genetic algorithm and to implement the 

algorithm programmatically. 

FOUR-INDEX TRANSPORTATION 

PROBLEMS 

In this paper, the following markings will 

be used: 

� ∈ � = 1, ������ is the index of the manufacturer; 

n is the number of manufacturers; 

	 ∈ 
 = 1, ������� is the index of the good type; m is 

the number of types of goods; 

� ∈ 
 = 1, ������ is the index of the vehicle; p is 

the number of vehicles; 

� ∈ � = 1, ������ is the index of the consumer; q is 

the number of consumers; 
��	��� ∈ � = � × 
 × 
 × � is a component 

part of the transportation problem; 

����� is the cost of transportation of the good j, 

which is transported from the 

manufacturer i to the consumer l on the 

vehicle k; 

����� is the quantity of the available good j, 

which is planned for transportation from 

the manufacturer i to the consumer l on 

the vehicle k; 

���� is the overall quantity of the good j, which 

is planned for transportation from the 

manufacturer j using the vehicle k; 

���� is the overall quantity of goods, that are 

planned for transportation from the 

manufacturer i to the consumer l using 

the vehicle k; 
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с��� is the quantity of the good j, which is 

planned for transportation from the 

manufacturer i to the consumer l; 

���� is the quantity of the good j, which is 

planned for transportation to the 

consumer l on the vehicle k; 

��� is the quantity of the good j, which is 

offered by the manufacturer i; 

��� is the quantity of goods, which are 

transported from the manufacturer i on 

the vehicle k; 

��� is the quantity of goods, which are 

transported from the manufacturer i to 

the consumer l; 

��� is the quantity of the good j, which is 

transported on the vehicle k; 

 �� is the overall quantity of goods, which are 

transported on the vehicle k to the 

consumer l; 

!�� is the quantity of the good j, which is 

transported from the consumer l; 

�� is the overall quantity of goods, which are 

transported from the manufacturer i; 

�� is the overall quantity of good j; 

�� is the overall quantity of goods, which are 

transported on the vehicle k; 

�� is the overall quantity of goods, which are 

transported to the consumer l. 

Objective function [Kaedure Bakhuet 2016, 

Raskin and Kirichenko 1982, 

Tuyet-Hoa and Philippe 2013]: 

Min ��"� = ∑ ∑ ∑ ∑ ����������
$
�%&

'
�%&

(
�%&

)
�%&        (1) (1) 

Depending on the real economical 

requirements, agreements, and contracts, the 

����� variable can be constrained differently. 

The imposition of restrictions allows the 

researcher to add real economical requirements 

to the mathematical model. Depending on the 

type of the imposed restrictions, the 

transportation problems can be either 

symmetric or asymmetric. Among the 

symmetric transportation problems, the follo-

wing can be highlighted [Raskin, Kirichenko, 

1982]: tetraspace, hexaplanar, and tetraaxial. 

The four-index tetraspace transportation 

problem. The tetraspace transportation 

problem may have the following economical 

interpretation: a manufacturer refers to 

a carrier to transport several types of goods 

from factories (manufacturers, in the context of 

the described earlier problem) to distribution 

places (consumers). The goods can be picked 

up on any factory if they are available at 

a particular place; the main condition is to pick 

up all goods from factories and to satisfy the 

demand for distribution places. Since there is 

no special requirement for vehicles, carriers 

can choose which vehicle to use on their own, 

guided by their maximal gainings. 

For the described problem only the 

restrictions ��, ��, �� and �� are defined 

[Raskin and Kirichenko 1982]: 

∑ ∑ ∑ �����
$
�%&

'
�%&

(
�%& = �� , ∀� ∈ �          (2) 

∑ ∑ ∑ �����
$
�%&

'
�%&

)
�%& = ��, ∀	 ∈ 
           (3) 

∑ ∑ ∑ �����
$
�%&

(
�%&

)
�%& = �� , ∀� ∈ 
         (4) 

∑ ∑ ∑ �����
'
�%&

(
�%&

)
�%& = �� , ∀� ∈ �          (5) 

����� ≥ 0                                                  (6) 

The meaning of the markings in the 

formulas refers the earlier described one. 

Accordingly, the formalized four-index 

tetraspace transportation problem is presented 

by formulas (1)-(6). 

The four-index hexaplanar transportation 

problem. The hexaplanar transportation 

problem might have, in particular, the 

following economical interpretation: 

a manufacturer refers to a carrier to transfer 

several types of raw materials from 

manufacturer's suppliers (manufacturers, in the 

context of the described earlier problem) to the 

manufacturers (consumers). Additionally, the 

following requirements have to be 

satisfied [formulas (7)-(12)]: 

− the quantity of the picked-up good of the 

particular type from the manufacturer is 

restricted by the availability of the good; 

− the quantity of the good of the particular 

type is restricted by the type of vehicle; 
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− the quantity of goods that are transported 

from the particular manufacturer on the 

particular vehicle type is fixed; 

− the overall quantity of goods is restricted, 

for example, by contracts, etc.; 

− the quantity of transported good of the 

particular type to the particular consumer 

is restricted by the demand; 

− the quantity of goods that is transported to 

the particular consumer on the particular 

vehicle type is restricted. 

The mathematical formalization of the 

described restrictions [Raskin and Kirichenko 

1982]: 

∑ ∑ �����
$
�%&

'
�%& = ��� , ∀� ∈ � , ∀	 ∈ 
    (7) 

∑ ∑ �����
$
�%&

(
�%& = ��� , ∀� ∈ �, ∀� ∈ 
   (8) 

∑ ∑ �����
'
�%&

(
�%& = ��� , ∀� ∈ �, ∀� ∈ �    (9) 

∑ ∑ �����
$
�%&

)
�%& = ��� , ∀	 ∈ 
, ∀� ∈ 
  (10) 

∑ ∑ �����
'
�%& =)

�%& !�� , ∀	 ∈ 
, ∀� ∈ �    (11) 

∑ ∑ �����
(
�%&

)
�%& =  �� , ∀� ∈ 
, ∀� ∈ � (12) 

����� ≥ 0                                               (13) 

Thus, the formalized four-index hexaplanar 

transportation problem is presented by the 

formulas (1), (7)-(13). 

The four-index tetraaxial transportation 

problem. The tetraaxial transportation problem 

has the hardest restrictions. This type of 

transportation problem is used in case of 

having transportations plans, restricted payload 

between warehouses, in particular, the 

transportation of the huge types of goods, 

which take all the payload of the vehicle. 

In the tetraaxial transportation problem, 

additionally, the following requirements have 

to be satisfied [formulas (14)-(17)]: 

− the quantity of the particular type of 

goods transported from the manufacturer 

on the particular type of vehicle is 

restricted; 

− the quantity of goods which is planned for 

transportation from the manufacturer to 

the consumer on the particular vehicle is 

restricted; 

− the quantity of particular type of goods 

from the manufacturer to the consumer is 

restricted; 

− the quantity of the particular type of 

goods that is transported to the consumer 

on the particular type of vehicle is 

restricted; 

The mathematical formalization of 

restrictions [Raskin and Kirichenko 1982]: 

∑ �����
$
�%& = ���� . ∀� ∈ � , ∀	 ∈ 
, ∀� ∈ 
   (14) 

∑ �����
(
�%& = ����, ∀� ∈ �, ∀� ∈ 
, ∀� ∈ �    (15) 

∑ �����
'
�%& = ���� , ∀� ∈ � , ∀	 ∈ 
, ∀� ∈ �   (16) 

∑ �����
)
�%& = ���� , ∀	 ∈ 
, ∀� ∈ 
, ∀� ∈ �  (17) 

����� ≥ 0                                                     (18) 

Thus, the formalized four-index tetraaxial 

transportation problem is defined by the 

formulas (1), (14)-(18). 

TOOLS FOR SOLVING FOUR-INDEX 

TRANSPORTATION PROBLEMS 

The more indexed the problem is, the more 

time is required to get the optimal solution. 

The problem's non-linear increasing 

complexity does not allow us to solve it for 

a reasonable time, using classical optimization 

methods. Therefore, there is a need for search 

of such optimization methods, which let us get 

the suboptimal solution (or even optimal) for 

a reasonable time. One of those methods for 

solving four-index transportation problems is 

a genetic algorithm. 

Let us outline the fundamental aspects of 

a genetic algorithm (based on [Goldberg 1988, 

Luke 2013]). 

A genetic algorithm is a search evolutionary 

algorithm that is used for solving optimization 

and modeling problems by randomly creating, 
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combining, and variation of the searched 

parameters with the use of the mechanisms, 

which resemble biological evolution. 

The fundamental concepts of genetic 

algorithms are derived from genetics, in 

particular, population, chromosome, and gene. 

The population is the set of genotypes of the 

particular generation. The chromosome (or 

individual) is the ordered sequence of genes, 

which represents the decoded solution to the 

problem. The gene is the atomic element of the 

chromosome. The mating pool consists of the 

chromosomes, which is selected in 

a predefined way using selection function, to 

which in the future the genetic operator will be 

applied (for example crossover, mutation), 

which have the random nature. 

The mechanism of genetic algorithms gives 

it specialness: a generic algorithm works with 

several potential solutions (chromosomes) on 

each generation. That allows getting rid of the 

possibility of getting into local extrema of an 

objective function and reducing the work time. 

The fitness function helps the selection 

function to perform a selection for the creation 

of a mating pool. 

The classic generic algorithm consists of 

the following steps: 1) the initialization of the 

initial population; 2) calculating fitness scores 

of the chromosomes, based on the fitness 

function; 3) checking the generic algorithm's 

stop criteria; 4) selection of chromosomes; 5) 

applying the genetic operators; 6) forming the 

population for the next generation; 7) choosing 

the fittest chromosome. 

The steps from step 2 to step 7 are repeated 

until the stop criterion is satisfied. If the stop 

criterion (step 3) is satisfied, the genetic 

algorithm executing goes to step 7; otherwise – 

to step 4. 

SOLVING FOUR-INDEX 

TRANSPORTATION PROBLEMS 

WITH A GENETIC ALGORITHM 

To solve four-index transportation problems 

with the use of a generic algorithm, we will 

define genetic algorithm concepts in the 

context of the transportation problem: 

− a component part (xijkl) of the transportation 

problem is the gene of the chromosome in 

the genetic algorithm; 

− a feasible solution is a chromosome; 

− an objective function in the transportation 

problem is a fitness function of the 

chromosome. 

Let us define the steps of a genetic 

algorithm for solving symmetric four-index 

transportation problems. 

The four-index tetraspace transportation 

problem 

Step 1. Initializing the initial population. The 

process of initializing the initial population 

connotes the generating of chromosomes for 

the initial population. For the clearness, let us 

make an illustrative example. Supposed, we 

have three manufacturers, two types of goods, 

two types of vehicles, and three consumers. 

Then, n = 3, m = 2, p = 2 and q = 3. In that 

case, the visualization of the chromosome can 

take the form of the four-index array (fig. 1). 

To get the value of the needed gene, the 

indexes of the manufacturer, type of good, type 

of vehicle, and the consumer should be 

entered. 

The size of the population does not change 

over the generations. The researchers choose 

the number of chromosomes in population on 

their own. Nonetheless, the number of 

chromosomes should satisfy the diversity of 

genetic material, since the lack of diversity 

may lead to inefficiency. Not only the small 

size can impact the performance negatively, 

but also the large one. A too-large population 

will consume more time on calculations, 

consequently leading to decreased efficiency. 

Thus, there should be a compromise decision. 

As mentioned before, for high performance, 

the genetic material should have high diversity. 

Furthermore, the genes have to satisfy the 

restrictions of the transportation problem (2)-

(6). To initialize the chromosomes with 

random values of genes, which satisfies the 

restrictions, the approach for initializing the 

initial population of chromosomes for the four-
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index transportation problem is adapted 

[Dimov and Lukyanov 2016, Kaedure Bakhuet 

2016, Skitsko and Voinikov 2018]: 

1. the upper bound value is calculated for the 

����� variable. The upper bound equals to 

the lowest value among all the restrictions: 

/���� = ��� {��; ��; ��; ��}, where /���� is 

the upper bound for the ����� variable, � ∈
� = 1, �, 	 ∈ 
 = 1, �, � ∈ 
 = 1, �, � ∈
� = 1, ������; 

2. the value of the variable is assigned; the 

entered value is chosen randomly in the 

range from zero the upper bound /����: 

����� = 3���40; /����5; 

3. the move to the subsequent variable is 

performed. The entered value for the 

current variable has to be taken into account 

when determining the values for the next 

variables. To achieve that, from the related 

restrictions, we subtract the ultimate value. 

Let us mark the subsequent consumer, 

vehicle, type of good and manufacturer as 

�∗, �∗, 	∗ and �∗: 

 �����∗ =  ���{��; ��; ��; �� − �����}, 

����∗� = ���{��; ��; �� − �����; ��}, 
���∗�� = ���{��; �� − �����; ��; ��}, 
 ��∗��� = ���8�� − �����; ��; ��; ��9.  

If the variable i, j, k or l is the last one for 

the ‘manufacturer’, ‘type of good’, 

‘vehicle’ or ‘consumer’ and equals to n, m, 

p or q, then the value for the chromosome 

with that index is entered as the upper 

bound /����. 

The generated chromosome is checked on 

getting into the feasible region. If the created 

chromosome is in the feasible region, it is 

taken to the initial population; otherwise - the 

chromosome is destroyed and the new one is 

created. 

Step 2. Calculating fitness scores of the 

chromosomes. The fitness function for the 

transportation problem is the objective 

function. 

The fitness function: 

�4"��ℎ$�5 = ∑ ∑ ∑ ∑ �����4�ℎ$5�����
$
�%&

'
�%&

(
�%&

)
�%& , (19) (19) 

where: 

q is the index of the chromosome in 

population; the number of chromosomes 

is determined by the researcher; 

�ℎ$ is the chromosome q in population (for 

each generation); 

�����4�ℎ$5 is the quantity of the good j, 

which is transported from the 

manufacturer j to the consumer l on the 

vehicle k; �����4�ℎ$5 is the gene of the 

chromosome �ℎ$; 

"��ℎ$� is the transportation problem 

potential solution, which is defined by 

the genes of the chromosomes �ℎ$; 

Step 3. Checking the genetic algorithm’s stop 

criteria. The stop criteria for four-index 

transportation problem can be [Luke 2013]: 1) 

the number of generations; 2) the time of 

genetic algorithm functioning; 3) the reach of 

the approximate value for fitness function; 

Step 4. The selection of the chromosomes, 

which used for creation of the new generation. 

The method of selection can be chosen from 

the existing ones [Luke 2013]: 1) fitness 

proportionate selection (or roulette-wheel 

selection); 2) tournament selection; 3) rank 

selection; 4) elitism selection, etc. 

Step 5. Applying the genetic operators, such as 

crossover, mutation. The crossover includes 

combining the genetic material of two 

chromosomes in a predefined way. For the 

transportation problem, the use of multi-point 

crossover is efficient, in which the recombined 

genes have the same real-world essence. 

The mutation alters one or more gene 

values in a particular chromosome, not relying 

on other chromosomes. For example, the 

mutation can be performed as follows:  

1. choose the gene, which is to mutate. To 

choose the gene, the indexes are randomly 

generated  
� = 3����0; ��, 

 	 = 3����0; ��,  

� = 3����0; ��,  

� = 3����0; �� for the variable �����; 

2. the value of the gene is changed is 

a particular way, for example �������ℎ$� =
3����0; ���8��, ��, �� , ��9�. 
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Because of applying the genetic operators, 

the created (new) chromosomes can go out of 

the feasible region. To return them, the 

procedure for returning a chromosome to the 

feasible region can be applied. For example, 

the procedure for a three-index transportation 

problem [Skitsko and Voinikov 2018] can be 

adapted for four-index. 

Step 6. Forming the population for the new 

generation. From the chromosomes, formed as 

a result of applying genetic operators to the 

selected pairs, after the check on the subject of 

being in the feasible region, the population for 

the next generation is created. 

Step 7 same as step 2. 

Step 8. Choosing the fittest chromosome, which 

is considered the final solution. If the genetic 

algorithm stops, among the chromosomes of 

the current population, the best one is chosen 

by the fitness function's value. For the 

transportation problem, the fittest chromosome 

would be the one with the lowest fitness 

function. 

In different types of transportation 

problems, the essence of genes may vary, as 

well as the restrictions applied to them may 

also change. 

That is why all the steps of the investigated 

problems will be the same, except for the first 

one - the initializing of the initial population, 

which we will cover later. 

The four-index hexaplanar 

transportation problem 

Step 1. Initializing the initial population. 

The procedure of generating the initial 

population for the four-index hexaplanar 

problem will vary in the way of calculating the 

upper bound for the variable (gene). In the 

four-index hexaplanar transportation problem, 

the upper bound for the variable ����� is 

calculated as: 

 /���� = min 8���; ���; ���; ���; !��;  ��9. 

Moreover, all the variables, which is related 

to the particular restriction should be taken into 

account, when calculating the upper bound for 

the subsequent variables: 

 �����∗ = min 8���; ���; ��� − �����; ���; !�� −
�����;  �� − �����; 9,  

����∗� = min 8���; ��� − �����; ���; ��� −
�����; !��;  �� − �����9,  

���∗�� = min 8��� − �����; ���; ���; ��� −
�����; !�� − �����;  ��9,  

��∗��� = min 8��� − �����; ��� − �����; ��� −
�����; ���; !��;  ��9. 

The four-index tetraaxial transportation 

problem 

Step 1. Initializing the initial population. In the 

four-index hexaplanar transportation problem, 

the upper bound for the variable ����� is 

calculated as:  

/���� = min 8����; ����; ����; ����9. 

Moreover, all the variables, which is related 

to the particular restriction should be taken into 

account, when calculating the upper bound for 

the subsequent variables:  
�����∗ =  ���{����; ���� − �����; ���� −

�����; ���� − �����},  

����∗� = ���{����  − �����; ���� −
�����; ���� ; ���� − �����},  

���∗�� = ���{����  − �����; ����; ���� −
�����; ���� − �����},  

��∗��� = ���{����  − �����; ���� − �����; ���� −
�����; ����}. 

 

THE PROGRAMMATIC 

IMPLEMENTATION OF THE 

GENERIC ALGORITHM FOR THE 

TRANSPORTATION PROBLEM 

Based on the material, we developed 

program implementation for solving the 

transportation problem with the genetic 

algorithm, using the open-source programming 

language TypeScript [TypeScript program-

ming language 2020]. All the methods 

described in this chapter are the authors' 

intellectual property and do not relate to any 

other library. 
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General information about the program. 

The program is developed using the 

TypeScript language in an object-oriented 

paradigm. The class called GeneticAlgorithm 

(all the class and method names have been 

given by authors) provides the interface to 

a researcher to solve the problem. To 

instantiate the class GeneticAlgorithm, the 

researcher must pass the information related to 

the current transportation problem to the class 

constructor: the payoff matrix, the restrictions, 

and the dimensions of the problem. 

Besides the information about the current 

transportation problem, the researcher may 

also change the general settings of the 

program, which include the population size, 

the number of iterations of the genetic 

algorithm, the crossover rate, and the mutation 

rate. The default settings are as follows: 

population size - 100; number of iterations - 

1000; crossover rate - 0.95; mutation rate - 

0.05. 

Let us describe the steps of the genetic 

algorithm for the program implementation. 

Step 0. Entering data. At this step, the user 

enters the dimensions of the problem, fills in 

the pay-off matrix, and adds the restrictions. 

The pay-off matrix is presented by a four-

dimensional array; the property dimensions 

consists of four properties (n, m, p, q), which 

relate to the dimensions of the problem. 

The property restrictions consist of the 

array of the class Restriction's instances. The 

class Restriction checks whether the 

chromosome is in the feasible region of the 

problem (the method isChromosomeValid), 

and allows calculating the upper bounds for 

genes’ value while initializing the initial 

population (the method calculateAvailable 

Capacities). 

The mechanism of those functions can 

differ, depending on the type of restrictions. 

Therefore, for the instantiation of the class, the 

user must pass the custom function 

calculateCapacityUsage as an argument for the 

class’s constructor. That function takes 

a chromosome object as an argument and 

returns boolean value whether the chromosome 

is in the feasible region. 

Step 1. The initialization of the initial 

population. For generating the initial 

population, the class Population is used, which 

has properties such as the current generation, 

the population size, and the number of 

generations (the last two taken from the 

configuration file, described before), and 

private method called initializePopulation. 

The method initializePopulation starts the 

initialization of the initial population. That 

method creates a chromosome, using the 

algorithm described earlier in the paper: for 

each gene gets value is chosen randomly from 

zero to the calculated upper bound. If the gene 

is the last for one of the restrictions, the value 

of the gene is chosen as the current upper 

bound. After the creation, the chromosome is 

checked on getting into the feasible region; if 

the chromosome is not in the feasible region, 

the new one is created instead. 

Pseudocode of the function 

initializePopulation: 

 
procedure start 

  for populationSize times 

   generate: for all the genes of the chromosome 

             upperBound = min(restrictions’ available          

                    capacities) 

    if the gene is the last one for any restriction 

     then the gene equals to the upperBound 

    else the gene equals rand(0, upperBound) 

 

   if the chromosome is in the feasible region 

    then add chromosome to the population 

   else continue: generate 

procedure end 

Step 2. Calculating fitness scores of the 

chromosomes. For calculating the fitness 

function of a chromosome, the protected 

method called calculateFitness is used, which 

iterates all the genes, multiplying them by the 

corresponding value of the pay-off matrix, then 

sums all the multiplications. 

Pseudocode of the private method 

calculateFitness: 
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procedure start 

  for each chromosome 

  fitness = 0 

  for each gene of the chromosome 

    fitness = fitness + current gene value * current pay-

off matrix value 

   chromosome’s fitness = fitness 

procedure end 

Step 3. Checking the genetic algorithm’s stop 

criteria. In the program implementation, the 

stop criterion is the number of generations. For 

checking the stop criterion, the method 

checkCriteria is used. If the method returns the 

truthy value, the execution is continued at step 

8, which we will describe later. 

Step 4. The selection of the chromosomes, 

which will be used for the creation of the new 

generation. For the selection function, the 

tournament method is chosen, where we 

randomly choose two chromosomes of the 

current generation, and the better one gets 

included in the mating pool. The number of 

'tours' is the same as the population size. 

Pseudocode of the function 

selectChromosomes: 

 
input: void 

output: nextGeneration 

procedure start 

 nextGeneration = empty array 

  

 for populationSize times 

   select1 = random chromosome from current population 

   select2 = random chromosome from current population 

   winner = max fitness function(select1, select2) 

   push winner to nextGeneration array 

 return nextGeneration 

procedure end 

Step 5. Applying the genetic operators, such as 

crossover, mutation. For the crossover, we use 

the function called crossoverCromosome. The 

probability of crossover correlates to the value 

in the configuration file. 

Pseudocode of the function 

crossoverChromosome: 

 

input: parent1, parent2 

output: child1, child2 

procedure start 

  for all the genes 

  if the gene index is odd 

      child1’s gene with given index = parent1’s 

corresponding gene 

    child2’s gene with given index = parent2’s 

corresponding gene 

   else 

      child2’s gene with given index = parent1’s 

corresponding gene 

      child1’s gene with given index = parent2’s 

corresponding gene 

  return array of child1 and child2 

procedure end 

In the other case, the mutation is applied 

(method mutateChromosome). In the program 

implementation, the genes, which are going to 

be mutated, are chosen randomly (by 

generating all the indexes). The value of the 

gene is mutated from zero the upper bound, 

which is calculated as the minimum 

restrictions’ capacity. 

Pseudocode of the function 

mutateChromosome: 

 
input: chromosome 

output: void  

procedure start 

  i = rand(0, n) 

  j = rand(0, m) 

  k = rand(0, p) 

  l = rand(0, q) 

  upperBound = min(restrictions’ capacities) 

  chromosome[i][j][k][l] = rand(0, upperBound) 

procedure end 

Step 6. Forming the next generation’s 

population. Applying genetic operators can 

cause the chromosome to go out of its feasible 

region. For returning it, we use the function 

returnToAllowableRange. 

Step 7 same as step 2. 

Step 8. Choosing the fittest chromosome, 

which is considered to be the final solution. 

When the specified number of iterations have 

been performed, for the final solution, the elite 

chromosome is taken. Displaying of the 

solution is done with the showResult function. 

Described earlier functions, in particular, 

the function for generating the initial 

population (initializePopulation), the function 

of calculating the fitness function 
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(calculateFitness), the function for performing 

selection (selectChromosomes), the function 

for mutation and crossover (mutate 

Chromosome and crossoverChromosome) are 

written by authors. 

The program implementation of the genetic 

algorithm for solving four-index transportation 

problems allows solving four-index symmetric 

transportation problems with different types of 

restriction (passing custom Restriction instance 

to the genetic algorithm constructor). The code 

of the program can be adapted for particular 

use cases by method overriding.   

CONCLUSIONS 

The multi-index transportation problems are 

getting popularity since they allow taking into 

account more variables from the real world, 

compared to the classic one. Earlier, multi-

index transportation problems did not get much 

attention because of the absence of adequate 

tools to solve them. The evolution of 

computing hardware made it possible to use 

such tools as a genetic algorithm. 

In the paper, we elucidate the theoretical 

part of the four-index transportation problems 

problem. The solving process of the four-index 

transportation problems is proposed: the 

fundamental transportation problem concepts 

described in the context of the genetic 

algorithm; the steps of the genetic algorithm 

adapted for the problem. 

Based on the material, we implemented the 

genetic algorithm for solving four-index 

transportation problems programmatically, 

using the programming language typescript. 

The program implementation allows solving 

four-index symmetric transportation problems. 

Since the transportation problem can be 

observed as the problem of allocating 

resources, the material of the paper can be used 

for solving specific problems in the area of 

manufacturing, logistic systems, information 

technologies, etc. 

For future work, we consider useful 

exploring the efficiency of a genetic algorithm, 

in particular, the influence of the population 

size, the dimensions, the crossover and 

mutation rates on the final solution; the usage 

of other types of selection (roulette-wheel, 

ranking method, etc.), crossover.  
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ROZWIĄZANIA CZTEROCZYNNIKOWEGO PROBLEM TRANSPOR-

TOWEGO PRZY POMOCY ALGORYTMU GENETYCZNEGO 

STRESZCZENIE. Wstęp: W warunkach komputerowej transformacji, efektywny proces podejmowania decyzji 

powinien obejmować wykorzystania modeli metod matematycznych. Przykładem takiej sytuacji jest problem 

transportowy, który jest problemem alokacji zasobów, występujący w takich obszarach jak produkcji, technologie 

informatyczne, itp. W celu uzyskania precyzyjniejszych rozwiązań, można zastosować wieloczynnikowy problem 

transportowy, który umożliwia uwzględnienie wielu zmiennych. 

 

Metody: W pracy zastosowano algorytm genetyczny dla rozwiązania czteroczynnikowych problemów transportowych. 

Wyniki: Wyszczególniono kroki algorytmu genetycznego dla czteroczynnikowego problem transportowego. 

Udowodnione, że kroki algorytmu genetycznego są takie same dla wszystkich typów czteroczynnikowych problemów 

transportowych, z wyjątkiem pierwszego kroku (inicjalizacji), który został opisany osobno dla każdego z typów 

problemu transportowego.  

W oparciu o wyniki teoretyczne, utworzono programowanie dla algorytmu genetycznego dla rozwiązywania 

czteroczynnikowych problemów transportowych przy użyciu opensourcowego języka typescript.  

Wnioski: W pracy zaproponowano zastosowanie algorytmu genetycznego dla rozwiązywania wieloczynnikowych 

problemów transportowych. Analizowany problem wymaga dalszych badań, szczególnie w zakresie wpływu zmian 

poszczególnych parametrów algorytmu genetycznego (wielkości populacji, mutacji, współczynnika podziału, itp.) na 

efektywność algorytmu w rozwiązywaniu czteroczynnikowych problemów transportowych.  

Słowa kluczowe: czteroczynnikowy problem transportowy, symetryczny problem transportowy, algorytm genetyczny, 

wdrożenie programu 
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