
Copyright: Wyższa Szkoła Logistyki, Poznań, Polska

Citation: Skitsko V., Voinikov M., 2020. Solving four-index transportation problem with the use of a genetic algorithm.

LogForum 16 (3), 397-408, http://doi.org/10.17270/J.LOG.2020.493

Received: 11.05.2020, Accepted: 09.06.2020, on-line: 30.06.2020.

 LogForum
 > Scientific Journal of Logistics <

 http://www.logforum.net p-ISSN 1895-2038

2020, 16 (3), 397-408

http://doi.org/10.17270/J.LOG.2020.493

 e-ISSN 1734-459X

ORIGINAL PAPER

SOLVING FOUR-INDEX TRANSPORTATION PROBLEM WITH THE

USE OF A GENETIC ALGORITHM

Volodymyr Skitsko, Mykola Voinikov

Kyiv National Economic University named after Vadym Hetman, Kyiv, Ukraine

ABSTRACT. Background: Under conditions of digital transformation, the effective decision-making process should

involve the usage of different mathematical models and methods, one of which is the transportation problem. The

transportation problem, as the problem of resource allocation, is applicable in such domains as manufacturing,

information technologies, etc. To get more precise solutions, the multi-index transportation problem can be applied,

which allows taking into account several variables.

Methods: This paper develops an approach for applying the genetic algorithm for solving four-index transportation

problems.

Results: The steps of the genetic algorithm for solving four-index transportation problems are outlined. The research has

proved the steps of the genetic algorithm to be the same for all four-index transportation problem types, except for the

first step (initialization), which is described for every type of transportation problem separately.

Based on the theoretical results, the program implementation of the genetic algorithm for solving four-index symmetric

transportation problems has been developed with the open-source programming language typescript.

Conclusions: The paper promotes the application of the genetic algorithm for solving multi-index transportation

problems. The investigated problem requires comprehensive studies, specifically, on the influence of change different

parameters of the genetic algorithm (population size, the mutation, and crossover rates, etc.) on the efficiency of the

algorithm in solving four-index transportation problems.

Key words: four-index transportation problem, symmetric transportation problem, genetic algorithm, program

implementation.

INTRODUCTION

Under conditions of digital transformation,

effective decision-making in management is

possible to achieve with the use of different

economic models and methods, which can be

based either on classic approaches and tools or

cutting-edge ones, for example, algorithms of

collective intelligence, evolutionary

algorithms, etc. The transportation problem as

the problem of resource allocation in different

domains such as manufacturing, information

technologies, for example, when building

communication networks or hardware and

software resources sharing in cloud computing

stays relevant until today.

The omnipresent usage of digital

technologies is enabling the collection of large

amounts of data, which can make the decision-

making process more efficient. Besides, the

increasing complexity of mathematical

methods and models, on the one hand, is

allowing using large amounts of data to make

decisions more precise, and on the other hand,

the number of computation increases as well

and can affect the time needed to implement

them. However, the evolution of computing

hardware lets to solve complicated problems in

an adequately short time. The problems, which

,

 Skitsko V., Voinikov M., 2020. Solving four-index transportation problem with the use of a genetic algorithm.

LogForum 16 (3), 397-408. http://doi.org/10.17270/J.LOG.2020.493

398

were known earlier, but required numerous

computations, got a second wind, one of which

is the multi-index transportation problem.

LITERATURE REVIEW

Multi-index transportation problems are the

extension of classic two-index transportation

problems. Diverse researches have been

devoted to multi-index transportation

problems. One of the present complete reviews

of multi-index transportation problems and

their extensions is done in work [Singh et al.

2016].

The most common extensions of the multi-

index transportation problem are taking into

account fuzzy parameters and multiple

objectives. For instance, multi-index

transportation problems with fuzzy parameters

are studied in [Kumar, Yadav 2012, Senapati

2018]; multi-objective multi-index

transportation problems have been researched

by [El-Shorbagy et al. 2020, Singh et al. 2018];

in work [Javadi et al. 2014] the research on

handling several objectives in solving logistics

problems is performed.

The application of a genetic algorithm in

solving logistics problems, in particular,

transportation and distribution ones, has been

studied in the following studies [Dimov and

Lukyanov 2016, El-Shorbagy et al. 2020, Indra

et al. 2020, Javadi et al. 2014, Kaedure

Bakhuet 2016, Karthy, Ganesan 2018, Thu

Huyen et al. 2013, Yun et al. 2020].

The authors [Karthy, Ganesan 2018]

suggest initializing the population with Vogel's

approximation method. Additionally, the

special mutation operator is introduced, which

is applied after each crossover and serves

a function of returning the chromosome to the

feasible region. [Dimov, Lukyanov 2016,

Kaedure Bakhuet 2016] propose the algorithm

for initializing the initial population. In [Thu

Huyen et al. 2013], described the solving of

classical transportation problem with the use of

a genetic algorithm.

The authors [Ritha, Vinotha 2012] propose

the heuristic method for solving the triaxial

transportation problem and describe the steps

of the solving process.

In those works, different approaches to

solving the transportation problems are

proposed, in particular, with the use of

a genetic algorithm. However, some aspects of

solving multi-index transportation problems

with the use of a genetic algorithm are not

studied enough in modern literature.

Additionally, to get practical results, it is

essential to implement the algorithm, for

example, programmatically, which can reveal

new information to the researcher. The paper

aims to describe the overall steps for solving

four-index problems of different types with a

genetic algorithm and to implement the

algorithm programmatically.

FOUR-INDEX TRANSPORTATION

PROBLEMS

In this paper, the following markings will

be used:

� ∈ � = 1, ������ is the index of the manufacturer;

n is the number of manufacturers;

	 ∈
 = 1, ������� is the index of the good type; m is

the number of types of goods;

� ∈
 = 1, ������ is the index of the vehicle; p is

the number of vehicles;

� ∈ � = 1, ������ is the index of the consumer; q is

the number of consumers;
��	��� ∈ � = � ×
 ×
 × � is a component

part of the transportation problem;

����� is the cost of transportation of the good j,

which is transported from the

manufacturer i to the consumer l on the

vehicle k;

����� is the quantity of the available good j,

which is planned for transportation from

the manufacturer i to the consumer l on

the vehicle k;

���� is the overall quantity of the good j, which

is planned for transportation from the

manufacturer j using the vehicle k;

���� is the overall quantity of goods, that are

planned for transportation from the

manufacturer i to the consumer l using

the vehicle k;

Skitsko V., Voinikov M., 2020. Solving four-index transportation problem with the use of a genetic algorithm.

LogForum 16 (3), 397-408. http://doi.org/10.17270/J.LOG.2020.493

399

с��� is the quantity of the good j, which is

planned for transportation from the

manufacturer i to the consumer l;

���� is the quantity of the good j, which is

planned for transportation to the

consumer l on the vehicle k;

��� is the quantity of the good j, which is

offered by the manufacturer i;

��� is the quantity of goods, which are

transported from the manufacturer i on

the vehicle k;

��� is the quantity of goods, which are

transported from the manufacturer i to

the consumer l;

��� is the quantity of the good j, which is

transported on the vehicle k;

 �� is the overall quantity of goods, which are

transported on the vehicle k to the

consumer l;

!�� is the quantity of the good j, which is

transported from the consumer l;

�� is the overall quantity of goods, which are

transported from the manufacturer i;

�� is the overall quantity of good j;

�� is the overall quantity of goods, which are

transported on the vehicle k;

�� is the overall quantity of goods, which are

transported to the consumer l.

Objective function [Kaedure Bakhuet 2016,

Raskin and Kirichenko 1982,

Tuyet-Hoa and Philippe 2013]:

Min ��"� = ∑ ∑ ∑ ∑ ����������
$
�%&

'
�%&

(
�%&

)
�%& (1) (1)

Depending on the real economical

requirements, agreements, and contracts, the

����� variable can be constrained differently.

The imposition of restrictions allows the

researcher to add real economical requirements

to the mathematical model. Depending on the

type of the imposed restrictions, the

transportation problems can be either

symmetric or asymmetric. Among the

symmetric transportation problems, the follo-

wing can be highlighted [Raskin, Kirichenko,

1982]: tetraspace, hexaplanar, and tetraaxial.

The four-index tetraspace transportation

problem. The tetraspace transportation

problem may have the following economical

interpretation: a manufacturer refers to

a carrier to transport several types of goods

from factories (manufacturers, in the context of

the described earlier problem) to distribution

places (consumers). The goods can be picked

up on any factory if they are available at

a particular place; the main condition is to pick

up all goods from factories and to satisfy the

demand for distribution places. Since there is

no special requirement for vehicles, carriers

can choose which vehicle to use on their own,

guided by their maximal gainings.

For the described problem only the

restrictions ��, ��, �� and �� are defined

[Raskin and Kirichenko 1982]:

∑ ∑ ∑ �����
$
�%&

'
�%&

(
�%& = �� , ∀� ∈ � (2)

∑ ∑ ∑ �����
$
�%&

'
�%&

)
�%& = ��, ∀	 ∈
 (3)

∑ ∑ ∑ �����
$
�%&

(
�%&

)
�%& = �� , ∀� ∈
 (4)

∑ ∑ ∑ �����
'
�%&

(
�%&

)
�%& = �� , ∀� ∈ � (5)

����� ≥ 0 (6)

The meaning of the markings in the

formulas refers the earlier described one.

Accordingly, the formalized four-index

tetraspace transportation problem is presented

by formulas (1)-(6).

The four-index hexaplanar transportation

problem. The hexaplanar transportation

problem might have, in particular, the

following economical interpretation:

a manufacturer refers to a carrier to transfer

several types of raw materials from

manufacturer's suppliers (manufacturers, in the

context of the described earlier problem) to the

manufacturers (consumers). Additionally, the

following requirements have to be

satisfied [formulas (7)-(12)]:

− the quantity of the picked-up good of the

particular type from the manufacturer is

restricted by the availability of the good;

− the quantity of the good of the particular

type is restricted by the type of vehicle;

,

 Skitsko V., Voinikov M., 2020. Solving four-index transportation problem with the use of a genetic algorithm.

LogForum 16 (3), 397-408. http://doi.org/10.17270/J.LOG.2020.493

400

− the quantity of goods that are transported

from the particular manufacturer on the

particular vehicle type is fixed;

− the overall quantity of goods is restricted,

for example, by contracts, etc.;

− the quantity of transported good of the

particular type to the particular consumer

is restricted by the demand;

− the quantity of goods that is transported to

the particular consumer on the particular

vehicle type is restricted.

The mathematical formalization of the

described restrictions [Raskin and Kirichenko

1982]:

∑ ∑ �����
$
�%&

'
�%& = ��� , ∀� ∈ � , ∀	 ∈
 (7)

∑ ∑ �����
$
�%&

(
�%& = ��� , ∀� ∈ �, ∀� ∈
 (8)

∑ ∑ �����
'
�%&

(
�%& = ��� , ∀� ∈ �, ∀� ∈ � (9)

∑ ∑ �����
$
�%&

)
�%& = ��� , ∀	 ∈
, ∀� ∈
 (10)

∑ ∑ �����
'
�%& =)

�%& !�� , ∀	 ∈
, ∀� ∈ � (11)

∑ ∑ �����
(
�%&

)
�%& = �� , ∀� ∈
, ∀� ∈ � (12)

����� ≥ 0 (13)

Thus, the formalized four-index hexaplanar

transportation problem is presented by the

formulas (1), (7)-(13).

The four-index tetraaxial transportation

problem. The tetraaxial transportation problem

has the hardest restrictions. This type of

transportation problem is used in case of

having transportations plans, restricted payload

between warehouses, in particular, the

transportation of the huge types of goods,

which take all the payload of the vehicle.

In the tetraaxial transportation problem,

additionally, the following requirements have

to be satisfied [formulas (14)-(17)]:

− the quantity of the particular type of

goods transported from the manufacturer

on the particular type of vehicle is

restricted;

− the quantity of goods which is planned for

transportation from the manufacturer to

the consumer on the particular vehicle is

restricted;

− the quantity of particular type of goods

from the manufacturer to the consumer is

restricted;

− the quantity of the particular type of

goods that is transported to the consumer

on the particular type of vehicle is

restricted;

The mathematical formalization of

restrictions [Raskin and Kirichenko 1982]:

∑ �����
$
�%& = ���� . ∀� ∈ � , ∀	 ∈
, ∀� ∈
 (14)

∑ �����
(
�%& = ����, ∀� ∈ �, ∀� ∈
, ∀� ∈ � (15)

∑ �����
'
�%& = ���� , ∀� ∈ � , ∀	 ∈
, ∀� ∈ � (16)

∑ �����
)
�%& = ���� , ∀	 ∈
, ∀� ∈
, ∀� ∈ � (17)

����� ≥ 0 (18)

Thus, the formalized four-index tetraaxial

transportation problem is defined by the

formulas (1), (14)-(18).

TOOLS FOR SOLVING FOUR-INDEX

TRANSPORTATION PROBLEMS

The more indexed the problem is, the more

time is required to get the optimal solution.

The problem's non-linear increasing

complexity does not allow us to solve it for

a reasonable time, using classical optimization

methods. Therefore, there is a need for search

of such optimization methods, which let us get

the suboptimal solution (or even optimal) for

a reasonable time. One of those methods for

solving four-index transportation problems is

a genetic algorithm.

Let us outline the fundamental aspects of

a genetic algorithm (based on [Goldberg 1988,

Luke 2013]).

A genetic algorithm is a search evolutionary

algorithm that is used for solving optimization

and modeling problems by randomly creating,

Skitsko V., Voinikov M., 2020. Solving four-index transportation problem with the use of a genetic algorithm.

LogForum 16 (3), 397-408. http://doi.org/10.17270/J.LOG.2020.493

401

combining, and variation of the searched

parameters with the use of the mechanisms,

which resemble biological evolution.

The fundamental concepts of genetic

algorithms are derived from genetics, in

particular, population, chromosome, and gene.

The population is the set of genotypes of the

particular generation. The chromosome (or

individual) is the ordered sequence of genes,

which represents the decoded solution to the

problem. The gene is the atomic element of the

chromosome. The mating pool consists of the

chromosomes, which is selected in

a predefined way using selection function, to

which in the future the genetic operator will be

applied (for example crossover, mutation),

which have the random nature.

The mechanism of genetic algorithms gives

it specialness: a generic algorithm works with

several potential solutions (chromosomes) on

each generation. That allows getting rid of the

possibility of getting into local extrema of an

objective function and reducing the work time.

The fitness function helps the selection

function to perform a selection for the creation

of a mating pool.

The classic generic algorithm consists of

the following steps: 1) the initialization of the

initial population; 2) calculating fitness scores

of the chromosomes, based on the fitness

function; 3) checking the generic algorithm's

stop criteria; 4) selection of chromosomes; 5)

applying the genetic operators; 6) forming the

population for the next generation; 7) choosing

the fittest chromosome.

The steps from step 2 to step 7 are repeated

until the stop criterion is satisfied. If the stop

criterion (step 3) is satisfied, the genetic

algorithm executing goes to step 7; otherwise –

to step 4.

SOLVING FOUR-INDEX

TRANSPORTATION PROBLEMS

WITH A GENETIC ALGORITHM

To solve four-index transportation problems

with the use of a generic algorithm, we will

define genetic algorithm concepts in the

context of the transportation problem:

− a component part (xijkl) of the transportation

problem is the gene of the chromosome in

the genetic algorithm;

− a feasible solution is a chromosome;

− an objective function in the transportation

problem is a fitness function of the

chromosome.

Let us define the steps of a genetic

algorithm for solving symmetric four-index

transportation problems.

The four-index tetraspace transportation

problem

Step 1. Initializing the initial population. The

process of initializing the initial population

connotes the generating of chromosomes for

the initial population. For the clearness, let us

make an illustrative example. Supposed, we

have three manufacturers, two types of goods,

two types of vehicles, and three consumers.

Then, n = 3, m = 2, p = 2 and q = 3. In that

case, the visualization of the chromosome can

take the form of the four-index array (fig. 1).

To get the value of the needed gene, the

indexes of the manufacturer, type of good, type

of vehicle, and the consumer should be

entered.

The size of the population does not change

over the generations. The researchers choose

the number of chromosomes in population on

their own. Nonetheless, the number of

chromosomes should satisfy the diversity of

genetic material, since the lack of diversity

may lead to inefficiency. Not only the small

size can impact the performance negatively,

but also the large one. A too-large population

will consume more time on calculations,

consequently leading to decreased efficiency.

Thus, there should be a compromise decision.

As mentioned before, for high performance,

the genetic material should have high diversity.

Furthermore, the genes have to satisfy the

restrictions of the transportation problem (2)-

(6). To initialize the chromosomes with

random values of genes, which satisfies the

restrictions, the approach for initializing the

initial population of chromosomes for the four-

,

 Skitsko V., Voinikov M., 2020. Solving four-index transportation problem with the use of a genetic algorithm.

LogForum 16 (3), 397-408. http://doi.org/10.17270/J.LOG.2020.493

402

index transportation problem is adapted

[Dimov and Lukyanov 2016, Kaedure Bakhuet

2016, Skitsko and Voinikov 2018]:

1. the upper bound value is calculated for the

����� variable. The upper bound equals to

the lowest value among all the restrictions:

/���� = ��� {��; ��; ��; ��}, where /���� is

the upper bound for the ����� variable, � ∈
� = 1, �, 	 ∈
 = 1, �, � ∈
 = 1, �, � ∈
� = 1, ������;

2. the value of the variable is assigned; the

entered value is chosen randomly in the

range from zero the upper bound /����:

����� = 3���40; /����5;

3. the move to the subsequent variable is

performed. The entered value for the

current variable has to be taken into account

when determining the values for the next

variables. To achieve that, from the related

restrictions, we subtract the ultimate value.

Let us mark the subsequent consumer,

vehicle, type of good and manufacturer as

�∗, �∗, 	∗ and �∗:

 �����∗ = ���{��; ��; ��; �� − �����},

����∗� = ���{��; ��; �� − �����; ��},
���∗�� = ���{��; �� − �����; ��; ��},
 ��∗��� = ���8�� − �����; ��; ��; ��9.

If the variable i, j, k or l is the last one for

the ‘manufacturer’, ‘type of good’,

‘vehicle’ or ‘consumer’ and equals to n, m,

p or q, then the value for the chromosome

with that index is entered as the upper

bound /����.

The generated chromosome is checked on

getting into the feasible region. If the created

chromosome is in the feasible region, it is

taken to the initial population; otherwise - the

chromosome is destroyed and the new one is

created.

Step 2. Calculating fitness scores of the

chromosomes. The fitness function for the

transportation problem is the objective

function.

The fitness function:

�4"��ℎ$�5 = ∑ ∑ ∑ ∑ �����4�ℎ$5�����
$
�%&

'
�%&

(
�%&

)
�%& , (19) (19)

where:

q is the index of the chromosome in

population; the number of chromosomes

is determined by the researcher;

�ℎ$ is the chromosome q in population (for

each generation);

�����4�ℎ$5 is the quantity of the good j,

which is transported from the

manufacturer j to the consumer l on the

vehicle k; �����4�ℎ$5 is the gene of the

chromosome �ℎ$;

"��ℎ$� is the transportation problem

potential solution, which is defined by

the genes of the chromosomes �ℎ$;

Step 3. Checking the genetic algorithm’s stop

criteria. The stop criteria for four-index

transportation problem can be [Luke 2013]: 1)

the number of generations; 2) the time of

genetic algorithm functioning; 3) the reach of

the approximate value for fitness function;

Step 4. The selection of the chromosomes,

which used for creation of the new generation.

The method of selection can be chosen from

the existing ones [Luke 2013]: 1) fitness

proportionate selection (or roulette-wheel

selection); 2) tournament selection; 3) rank

selection; 4) elitism selection, etc.

Step 5. Applying the genetic operators, such as

crossover, mutation. The crossover includes

combining the genetic material of two

chromosomes in a predefined way. For the

transportation problem, the use of multi-point

crossover is efficient, in which the recombined

genes have the same real-world essence.

The mutation alters one or more gene

values in a particular chromosome, not relying

on other chromosomes. For example, the

mutation can be performed as follows:

1. choose the gene, which is to mutate. To

choose the gene, the indexes are randomly

generated
� = 3����0; ��,

 	 = 3����0; ��,

� = 3����0; ��,

� = 3����0; �� for the variable �����;

2. the value of the gene is changed is

a particular way, for example �������ℎ$� =
3����0; ���8��, ��, �� , ��9�.

Skitsko V., Voinikov M., 2020. Solving four-index transportation problem with the use of a genetic algorithm.

LogForum 16 (3), 397-408. http://doi.org/10.17270/J.LOG.2020.493

403

Because of applying the genetic operators,

the created (new) chromosomes can go out of

the feasible region. To return them, the

procedure for returning a chromosome to the

feasible region can be applied. For example,

the procedure for a three-index transportation

problem [Skitsko and Voinikov 2018] can be

adapted for four-index.

Step 6. Forming the population for the new

generation. From the chromosomes, formed as

a result of applying genetic operators to the

selected pairs, after the check on the subject of

being in the feasible region, the population for

the next generation is created.

Step 7 same as step 2.

Step 8. Choosing the fittest chromosome, which

is considered the final solution. If the genetic

algorithm stops, among the chromosomes of

the current population, the best one is chosen

by the fitness function's value. For the

transportation problem, the fittest chromosome

would be the one with the lowest fitness

function.

In different types of transportation

problems, the essence of genes may vary, as

well as the restrictions applied to them may

also change.

That is why all the steps of the investigated

problems will be the same, except for the first

one - the initializing of the initial population,

which we will cover later.

The four-index hexaplanar

transportation problem

Step 1. Initializing the initial population.

The procedure of generating the initial

population for the four-index hexaplanar

problem will vary in the way of calculating the

upper bound for the variable (gene). In the

four-index hexaplanar transportation problem,

the upper bound for the variable ����� is

calculated as:

 /���� = min 8���; ���; ���; ���; !��; ��9.

Moreover, all the variables, which is related

to the particular restriction should be taken into

account, when calculating the upper bound for

the subsequent variables:

 �����∗ = min 8���; ���; ��� − �����; ���; !�� −
�����; �� − �����; 9,

����∗� = min 8���; ��� − �����; ���; ��� −
�����; !��; �� − �����9,

���∗�� = min 8��� − �����; ���; ���; ��� −
�����; !�� − �����; ��9,

��∗��� = min 8��� − �����; ��� − �����; ��� −
�����; ���; !��; ��9.

The four-index tetraaxial transportation

problem

Step 1. Initializing the initial population. In the

four-index hexaplanar transportation problem,

the upper bound for the variable ����� is

calculated as:

/���� = min 8����; ����; ����; ����9.

Moreover, all the variables, which is related

to the particular restriction should be taken into

account, when calculating the upper bound for

the subsequent variables:
�����∗ = ���{����; ���� − �����; ���� −

�����; ���� − �����},

����∗� = ���{���� − �����; ���� −
�����; ���� ; ���� − �����},

���∗�� = ���{���� − �����; ����; ���� −
�����; ���� − �����},

��∗��� = ���{���� − �����; ���� − �����; ���� −
�����; ����}.

THE PROGRAMMATIC

IMPLEMENTATION OF THE

GENERIC ALGORITHM FOR THE

TRANSPORTATION PROBLEM

Based on the material, we developed

program implementation for solving the

transportation problem with the genetic

algorithm, using the open-source programming

language TypeScript [TypeScript program-

ming language 2020]. All the methods

described in this chapter are the authors'

intellectual property and do not relate to any

other library.

,

 Skitsko V., Voinikov M., 2020. Solving four-index transportation problem with the use of a genetic algorithm.

LogForum 16 (3), 397-408. http://doi.org/10.17270/J.LOG.2020.493

404

General information about the program.

The program is developed using the

TypeScript language in an object-oriented

paradigm. The class called GeneticAlgorithm

(all the class and method names have been

given by authors) provides the interface to

a researcher to solve the problem. To

instantiate the class GeneticAlgorithm, the

researcher must pass the information related to

the current transportation problem to the class

constructor: the payoff matrix, the restrictions,

and the dimensions of the problem.

Besides the information about the current

transportation problem, the researcher may

also change the general settings of the

program, which include the population size,

the number of iterations of the genetic

algorithm, the crossover rate, and the mutation

rate. The default settings are as follows:

population size - 100; number of iterations -

1000; crossover rate - 0.95; mutation rate -

0.05.

Let us describe the steps of the genetic

algorithm for the program implementation.

Step 0. Entering data. At this step, the user

enters the dimensions of the problem, fills in

the pay-off matrix, and adds the restrictions.

The pay-off matrix is presented by a four-

dimensional array; the property dimensions

consists of four properties (n, m, p, q), which

relate to the dimensions of the problem.

The property restrictions consist of the

array of the class Restriction's instances. The

class Restriction checks whether the

chromosome is in the feasible region of the

problem (the method isChromosomeValid),

and allows calculating the upper bounds for

genes’ value while initializing the initial

population (the method calculateAvailable

Capacities).

The mechanism of those functions can

differ, depending on the type of restrictions.

Therefore, for the instantiation of the class, the

user must pass the custom function

calculateCapacityUsage as an argument for the

class’s constructor. That function takes

a chromosome object as an argument and

returns boolean value whether the chromosome

is in the feasible region.

Step 1. The initialization of the initial

population. For generating the initial

population, the class Population is used, which

has properties such as the current generation,

the population size, and the number of

generations (the last two taken from the

configuration file, described before), and

private method called initializePopulation.

The method initializePopulation starts the

initialization of the initial population. That

method creates a chromosome, using the

algorithm described earlier in the paper: for

each gene gets value is chosen randomly from

zero to the calculated upper bound. If the gene

is the last for one of the restrictions, the value

of the gene is chosen as the current upper

bound. After the creation, the chromosome is

checked on getting into the feasible region; if

the chromosome is not in the feasible region,

the new one is created instead.

Pseudocode of the function

initializePopulation:

procedure start

 for populationSize times

 generate: for all the genes of the chromosome

 upperBound = min(restrictions’ available

 capacities)

 if the gene is the last one for any restriction

 then the gene equals to the upperBound

 else the gene equals rand(0, upperBound)

 if the chromosome is in the feasible region

 then add chromosome to the population

 else continue: generate

procedure end

Step 2. Calculating fitness scores of the

chromosomes. For calculating the fitness

function of a chromosome, the protected

method called calculateFitness is used, which

iterates all the genes, multiplying them by the

corresponding value of the pay-off matrix, then

sums all the multiplications.

Pseudocode of the private method

calculateFitness:

Skitsko V., Voinikov M., 2020. Solving four-index transportation problem with the use of a genetic algorithm.

LogForum 16 (3), 397-408. http://doi.org/10.17270/J.LOG.2020.493

405

procedure start

 for each chromosome

 fitness = 0

 for each gene of the chromosome

 fitness = fitness + current gene value * current pay-

off matrix value

 chromosome’s fitness = fitness

procedure end

Step 3. Checking the genetic algorithm’s stop

criteria. In the program implementation, the

stop criterion is the number of generations. For

checking the stop criterion, the method

checkCriteria is used. If the method returns the

truthy value, the execution is continued at step

8, which we will describe later.

Step 4. The selection of the chromosomes,

which will be used for the creation of the new

generation. For the selection function, the

tournament method is chosen, where we

randomly choose two chromosomes of the

current generation, and the better one gets

included in the mating pool. The number of

'tours' is the same as the population size.

Pseudocode of the function

selectChromosomes:

input: void

output: nextGeneration

procedure start

 nextGeneration = empty array

 for populationSize times

 select1 = random chromosome from current population

 select2 = random chromosome from current population

 winner = max fitness function(select1, select2)

 push winner to nextGeneration array

 return nextGeneration

procedure end

Step 5. Applying the genetic operators, such as

crossover, mutation. For the crossover, we use

the function called crossoverCromosome. The

probability of crossover correlates to the value

in the configuration file.

Pseudocode of the function

crossoverChromosome:

input: parent1, parent2

output: child1, child2

procedure start

 for all the genes

 if the gene index is odd

 child1’s gene with given index = parent1’s

corresponding gene

 child2’s gene with given index = parent2’s

corresponding gene

 else

 child2’s gene with given index = parent1’s

corresponding gene

 child1’s gene with given index = parent2’s

corresponding gene

 return array of child1 and child2

procedure end

In the other case, the mutation is applied

(method mutateChromosome). In the program

implementation, the genes, which are going to

be mutated, are chosen randomly (by

generating all the indexes). The value of the

gene is mutated from zero the upper bound,

which is calculated as the minimum

restrictions’ capacity.

Pseudocode of the function

mutateChromosome:

input: chromosome

output: void

procedure start

 i = rand(0, n)

 j = rand(0, m)

 k = rand(0, p)

 l = rand(0, q)

 upperBound = min(restrictions’ capacities)

 chromosome[i][j][k][l] = rand(0, upperBound)

procedure end

Step 6. Forming the next generation’s

population. Applying genetic operators can

cause the chromosome to go out of its feasible

region. For returning it, we use the function

returnToAllowableRange.

Step 7 same as step 2.

Step 8. Choosing the fittest chromosome,

which is considered to be the final solution.

When the specified number of iterations have

been performed, for the final solution, the elite

chromosome is taken. Displaying of the

solution is done with the showResult function.

Described earlier functions, in particular,

the function for generating the initial

population (initializePopulation), the function

of calculating the fitness function

,

 Skitsko V., Voinikov M., 2020. Solving four-index transportation problem with the use of a genetic algorithm.

LogForum 16 (3), 397-408. http://doi.org/10.17270/J.LOG.2020.493

406

(calculateFitness), the function for performing

selection (selectChromosomes), the function

for mutation and crossover (mutate

Chromosome and crossoverChromosome) are

written by authors.

The program implementation of the genetic

algorithm for solving four-index transportation

problems allows solving four-index symmetric

transportation problems with different types of

restriction (passing custom Restriction instance

to the genetic algorithm constructor). The code

of the program can be adapted for particular

use cases by method overriding.

CONCLUSIONS

The multi-index transportation problems are

getting popularity since they allow taking into

account more variables from the real world,

compared to the classic one. Earlier, multi-

index transportation problems did not get much

attention because of the absence of adequate

tools to solve them. The evolution of

computing hardware made it possible to use

such tools as a genetic algorithm.

In the paper, we elucidate the theoretical

part of the four-index transportation problems

problem. The solving process of the four-index

transportation problems is proposed: the

fundamental transportation problem concepts

described in the context of the genetic

algorithm; the steps of the genetic algorithm

adapted for the problem.

Based on the material, we implemented the

genetic algorithm for solving four-index

transportation problems programmatically,

using the programming language typescript.

The program implementation allows solving

four-index symmetric transportation problems.

Since the transportation problem can be

observed as the problem of allocating

resources, the material of the paper can be used

for solving specific problems in the area of

manufacturing, logistic systems, information

technologies, etc.

For future work, we consider useful

exploring the efficiency of a genetic algorithm,

in particular, the influence of the population

size, the dimensions, the crossover and

mutation rates on the final solution; the usage

of other types of selection (roulette-wheel,

ranking method, etc.), crossover.

ACKNOWLEDGMENTS AND

FUNDING SOURCE DECLARATION

This research received no specific grant

from any funding agency in the public,

commercial, or not-for-profit sectors.

REFERENCES

Dimov Yu.S., Lukyanov N.D., 2016. Genetic

algorithm application for solving a multi-

index transportation problem. Proceedings

of Irkutsk State Technical University, 7,

73–79.

http://doi.org/10.21285/1814-3520-2016-7-

73-79

El-Shorbagy M., Mousa A., ALoraby H., Abo-

Kila T., 2020. Evolutionary algorithm for

multi-objective multi-index transportation

problem under fuzziness. Journal of

Applied Research on Industrial

Engineering, 7(1), 36-56.

http://doi.org/0.22105/jarie.2020.214142.11

19

Goldberg D. E., 1988. Genetic Algorithms in

Search, Optimization, and Machine

Learning. Addison-Wesley Publishing, Inc.

432 pages.

Indra Z., Chairunisah, Refisis N.R., 2020.

Application Genetic Algorithm in solving

three-level supply chain distribution

problems. Journal of Physics: Conference

Series. 1462. 012035.

http://doi.org/10.1088/1742-

6596/1462/1/012035

Javadi A., Tarokh M.J., Piroozfar S., 2014.

Solving a multi-objective vehicle

scheduling- routing of interurban

transportation fleet with the purpose of

minimizing delays by Using the Differential

Evolutionary Algorithm. Uncertain Supply

Chain Management, 2 (3), 125-136.

http://doi.org/10.5267/j.uscm.2014.5.005

Skitsko V., Voinikov M., 2020. Solving four-index transportation problem with the use of a genetic algorithm.

LogForum 16 (3), 397-408. http://doi.org/10.17270/J.LOG.2020.493

407

Kaedure Bakhuet A.-J., 2016. Solving bi-

objective 4-dimensional transportation

problem by using PSO. AGK Bakhat.

Sci.Int (Lahor.), 28 (3), 2403-2410.

http://www.sci-

int.com/pdf/636551900738439387.pdf

Karthy T., Ganesan K., 2018. Multi Objective

Transportation Problem - Genetic

Algorithm Approach. International Journal

of Pure and Applied Mathematics. Volume

119 No. 9, 343-350.

https://acadpubl.eu/jsi/2018-119-

9/articles/9/33.pdf

Kumar A., Yadav S.P., 2012. A Survey of

Multi-index Transportation Problems and

Its Variants with Crisp and Fuzzy

Parameters. K. Proceedings of the

International Conference on Soft

Computing for Problem Solving (SocProS

2011) December 20-22, 2011. 919–932.

http://doi.org/10.1007/978-81-322-0487-

9_86

Luke S., 2013. Essentials of Metaheuristics.

Lulu, second edition. 242 pages., Cite this

document as: Sean Luke, 2009,Essentials of

Metaheuristics, available at

http://cs.gmu.edu/~sean/book/metaheuristic

s/

Raskin, L.G., Kirichenko, I.O., 1982.

Mnogoindeksnye zadachi lineinogo

programmirovaniya (Multi-index Problems

of Linear Programming), Moscow: Radio i

Svyaz'.

 Ritha W., Vinotha. M.J., 2012. Heuristic

algorithm for multi-index fixed charge

fuzzy transportation problem. Elixir Comp.

Sci. Engg. 46, 8346-8353.

https://www.elixirpublishers.com/articles/1

351162502_46%20(2012)%208346-

8353.pdf

Senapati. S., 2018. Multi-Index Bi-Criterion

Transportation Problem: A Fuzzy

Approach. International Journal of

Advanced Engineering, Management and

Science, 4 (7), 550-556.

http://doi.org/10.22161/ijaems.4.7.8

Singh S., Chauhan S.K., Kuldeep., 2018. A Bi-

Criteria Multi-Index Bulk Transportation

Problem. Annals of Pure and Applied

Mathematics, 16 (2), 479-485.

http://doi.org/10.22457/apam.v16n2a26

Singh S., Tuli R., Sarode D., 2016. A review

on fuzzy and stochastic extensions of the

Multi Index transportation problem. Yugo-

slav Journal of Operations Research, 27 (1),

3-29.

http://doi.org/10.2298/YJOR150417007S

Skitsko V.I., Voinikov M. Yu., 2018. Solving

a Three-Index Transportation Problem

under Risk Conditions Using a Genetic

Algorithm. The Problems of Economy, 3,

246–252.

https://www.problecon.com/export_pdf/pro

blems-of-economy-2018-3_0-pages-

246_252.pdf

Thu Huyen N., Luong Sy Uoc, Rosaly B.

Alday, 2013. Genetic Algorithm for

Solving Balanced Transportation Problem.

International Journal of Innovative Tech-

nology and Exploring Engineering.

(IJITEE), 3(4), 24-27.

http://www.ijitee.org/wp-

content/uploads/papers/v3i4/D1163093413.

pdf

Tuyet-Hoa P., Philippe D., 2013. An Exact

Method for Solving the Four Index

Transportation Problem and Industrial

Application. American Journal of

Operational Research, 3(2), 28-44.

http://article.sapub.org/10.5923.j.ajor.20130

302.02.html

TypeScript programming language, 2020.

https://www.typescriptlang.org/

Yun Y., Chuluunsukh A., Gen M., 2020.

Sustainable closed-loop supply chain

design problem: A hybrid genetic algorithm

approach. Mathematics, 8 (1), 84.

http://doi.org/10.3390/math8010084

,

 Skitsko V., Voinikov M., 2020. Solving four-index transportation problem with the use of a genetic algorithm.

LogForum 16 (3), 397-408. http://doi.org/10.17270/J.LOG.2020.493

408

ROZWIĄZANIA CZTEROCZYNNIKOWEGO PROBLEM TRANSPOR-

TOWEGO PRZY POMOCY ALGORYTMU GENETYCZNEGO

STRESZCZENIE. Wstęp: W warunkach komputerowej transformacji, efektywny proces podejmowania decyzji

powinien obejmować wykorzystania modeli metod matematycznych. Przykładem takiej sytuacji jest problem

transportowy, który jest problemem alokacji zasobów, występujący w takich obszarach jak produkcji, technologie

informatyczne, itp. W celu uzyskania precyzyjniejszych rozwiązań, można zastosować wieloczynnikowy problem

transportowy, który umożliwia uwzględnienie wielu zmiennych.

Metody: W pracy zastosowano algorytm genetyczny dla rozwiązania czteroczynnikowych problemów transportowych.

Wyniki: Wyszczególniono kroki algorytmu genetycznego dla czteroczynnikowego problem transportowego.

Udowodnione, że kroki algorytmu genetycznego są takie same dla wszystkich typów czteroczynnikowych problemów

transportowych, z wyjątkiem pierwszego kroku (inicjalizacji), który został opisany osobno dla każdego z typów

problemu transportowego.

W oparciu o wyniki teoretyczne, utworzono programowanie dla algorytmu genetycznego dla rozwiązywania

czteroczynnikowych problemów transportowych przy użyciu opensourcowego języka typescript.

Wnioski: W pracy zaproponowano zastosowanie algorytmu genetycznego dla rozwiązywania wieloczynnikowych

problemów transportowych. Analizowany problem wymaga dalszych badań, szczególnie w zakresie wpływu zmian

poszczególnych parametrów algorytmu genetycznego (wielkości populacji, mutacji, współczynnika podziału, itp.) na

efektywność algorytmu w rozwiązywaniu czteroczynnikowych problemów transportowych.

Słowa kluczowe: czteroczynnikowy problem transportowy, symetryczny problem transportowy, algorytm genetyczny,

wdrożenie programu

Volodymyr Skitsko ORCID ID: https://orcid.org/0000-0002-6290-9194

Kyiv National Economic University named after Vadym Hetman

Institute Information Technologies in Economics

Kyiv, Ukraine

e-mail: skitsko@kneu.edu.ua

Mykola Voinikov ORCID ID: https://orcid.org/0000-0001-7961-5312

Kyiv National Economic University named after Vadym Hetman

Institute Information Technologies in Economics

Kyiv, Ukraine

e-mail: qwoxa1@gmail.com

