PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Monitoring and forecasting spatio-temporal LULC for Akure rainforest habitat in Nigeria

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
For several decades, Nigerian cities have been experiencing a decline in their biodiversity resulting from rapid land use land cover (LULC) changes. Anticipating short/long-term consequences, this study hypothesised the effects of LULC variables in Akure, a developing tropical rainforest city in south-west Nigeria. A differentiated trend of urban LULC was determined over a period covering 1999–2019. The study showed the net change for bare land, built-up area, cultivated land, forest cover and grassland over the two decades to be -292.68 km2, +325.79 km2, +88.65 km2, +8.62 km2 and -131.38 km2, respectively. With a projected population increase of about 46.85%, the study identified that the built-up land cover increased from 1.98% to 48.61%. The change detection analysis revealed an upsurge in built area class. The expansion indicated a significant inverse correlation with the bare land class (50.97% to 8.66%) and grassland class (36.33% to 17.94%) over the study period. The study observed that the land consumption rate (in hectares) steadily increased by 0.00505, 0.00362 and 0.0687, in the year 1999, 2009 and 2019, respectively. This rate of increase is higher than studies conducted in more populated cities. The Cellular Automata (CA) Markovian analysis predicted a 37.92% growth of the study area will be the built-up area in the next two decades (2039). The 20-year prediction for Akure built-up area is within range when compared to CA Markov prediction for other cities across the globe. The findings of this study will guide future planning for rational LULC
Rocznik
Tom
Strony
29--38
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr.
Twórcy
  • Department of Geomatics, Faculty of Environmental Design, Ahmadu Bello University, Zaria, Nigeria
  • Department of Geomatics, Faculty of Environmental Design, Ahmadu Bello University, Zaria, Nigeria
  • Department of Geomatics, Faculty of Environmental Design, Ahmadu Bello University, Zaria, Nigeria
autor
  • Department of Geomatics, Faculty of Environmental Design, Ahmadu Bello University, Zaria, Nigeria
  • Department of Geomatics, Faculty of Environmental Design, Ahmadu Bello University, Zaria, Nigeria
Bibliografia
  • 1. Adepoju, A. (2018). Rural–urban socio-economic links: the example of migrants in south-west nigeria. In Modern Migrations in Western Africa, pages 127–137. Routledge, doi:10.4324/9781351044073-3.
  • 2. Ahmed, B., Kamruzzaman, M., Zhu, X., Rahman, M., and Choi, K. (2013). Simulating Land Cover Changes and Their Impactson Land Surface Temperature in Dhaka, Bangladesh. Remote Sensing, 5(11):5969–5998, doi:10.3390/rs5115969.
  • 3. Al-sharif, A. A. and Pradhan, B. (2016). Spatio-temporal prediction of urban expansion using bivariate statistical models: assessment of the efficacy of evidential belief functions and frequency ratio models. Applied Spatial Analysisand Policy, 9(2):213–231, doi:10.1007/s12061-015-9147-1.
  • 4. Aliyu, Y. A. and Botai, J. O. (2018a). Appraising the effects of atmospheric aerosols and ground particulates concentrations on GPS-derived PWV estimates. Atmospheric Environment,193:24–32, doi:10.1016/j.atmosenv.2018.09.001.
  • 5. Aliyu, Y. A. and Botai, J. O. (2018b). Reviewing the local and global implications of air pollution trends in Zaria, northern Nigeria. Urban climate, 26:51–59, doi:10.1016/j.uclim.2018.08.008.
  • 6. Anderson, J. R. (1976). A land use and land cover classification system for use with remote sensor data, volume 964. US Government Printing Office, doi:10.3133/pp964.
  • 7. Balogun, I. A., Adeyewa, D. Z., Balogun, A. A., and Morakinyo, T. E. (2011). Analysis of urban expansion and land use changes in Akure, Nigeria, using remote sensing and geographic information system (GIS) techniques.Journal of Geography and Regional Planning, 4(9):533–541.
  • 8. Bello, M. N., Abbas, I. I., and Akpu, B. (2014). Analysis of land use-land cover changes in Zuru and its environment of Kebbi state, Nigeria using remote sensing and geographic information system technology. Journal of Geography and Earth Sciences, 2(1):113–126.
  • 9. Bhat, P. A., ul Shafiq, M., Mir, A. A., and Ahmed, P. (2017). Urban sprawl and its impact on landuse/landcover dynamics of Dehradun City, India. International Journal of Sustainable Built Environment, 6(2):513–521, doi:10.1016/j.ijsbe.2017.10.003.
  • 10. Chavez, P. (1996). Image-Based Atmospheric Corrections – Revisited and Improved. Photogrammetric Engineering and Remote Sensing, 62(9):1025–1035.
  • 11. Hamad, R., Balzter, H., and Kolo, K. (2018). Predicting land use/land cover changes using a CA-Markov model under two different scenarios. Sustainability, 10(10):3421, doi:10.3390/su10103421.
  • 12. Hossen, H., Ibrahim, M. G., Mahmod, W. E., Negm, A., Nadaoka, K., and Saavedra, O. (2018). Forecasting future changes in Manzala Lake surface area by considering variations in land use and land cover using remote sensing approach. Arabian Journal of Geosciences, 11(5):93, doi:10.1007/s12517-018-3416-7.
  • 13. Hu, Z. and Lo, C. (2007). Modeling urban growth in Atlanta using logistic regression. Computers, Environment and Urban Systems, 31(6):667–688, doi:10.1016/j.compenvurbsys.2006.11.001.
  • 14. Joshi, N., Baumann, M., Ehammer, A., Fensholt, R., Grogan, K., Hostert, P., Jepsen, M. R., Kuemmerle, T., Meyfroidt, P., Mitchard, E. T., et al. (2016). A review of the application of optical and radar remote sensing data fusion to land use mapping and monitoring. Remote Sensing, 8(1):70, doi:10.3390/rs8010070.
  • 15. Kumar, S., Radhakrishnan, N., and Mathew, S. (2014). Land use change modelling using a Markov model and remote sensing. Geomatics, Natural Hazards and Risk, 5(2):145–156, doi:10.1080/19475705.2013.795502.
  • 16. Liping, C., Yujun, S., and Saeed, S. (2018). Monitoring and predicting land use and land cover changes using remote sensing and GIS techniques - A case study of a hilly area, Jiangle, China. PloS one, 13(7):e0200493, doi:10.1371/journal.pone.0200493.
  • 17. Mahboob, M. A., Atif, I., and Iqbal, J. (2015). Remote Sensing and GIS Applications for Assessment of Urban Sprawl in Karachi, Pakistan. Science, Technology and Development, 34(3):179–188, doi:10.3923/std.2015.179.188.
  • 18. Maithani, S. (2009). A neural network based urban growth model of an Indian city. Journal of the Indian Society of Remote Sensing, 37(3):363–376, doi:10.1007/s12524-009-0041-7.
  • 19. Mondal, B., Das, D. N., and Bhatta, B. (2017). Integrating cellular automata and Markov techniques to generate urban development potential surface: a study on Kolkata agglomeration. Geocarto international, 32(4):401–419, doi:10.1080/10106049.2016.1155656.
  • 20. Mubako, S., Belhaj, O., Heyman, J., Hargrove, W., and Reyes, C. (2018). Monitoring of land use/land-cover changes in the arid transboundary middle Rio grande basin using remote sensing. Remote Sensing, 10(12):2005, doi:10.3390/rs10122005.
  • 21. National Population Commission (2010). Population Distribution by Sex, State, LGA, Senatorial District, 2006 Population and Housing Census. Retrieved from http://www.population.gov.ng/images/NPCNEW/Pr%20Vol%203%20Pop%20by%20State%20&%20Senatorial%20District.zip.
  • 22. Nnaemeka-Okeke, R. (2016). Urban sprawl and sustainable city development In Nigeria. Journal of Ecological Engineering, 17(2):1–11, doi:10.12911/22998993/62277.
  • 23. Oloukoi, J., Oyinloye, R. O., and Yadjemi, H. (2014). Geospatial analysis of urban sprawl in Ile-Ife city, Nigeria. South African Journal of Geomatics, 3(2):128–144, doi:10.4314/sajg.v3i2.2.
  • 24. Olujimi, J. and Gbadamosi, K. (2007). Urbanisation of Peri Urban Settlements: A Case Study of Aba-Oyo in Akure, Nigeria. Journal of the Social Sciences, 2(1):60–69.
  • 25. Oluseyi, O. F. (2006). Urban land use change analysis of a traditional city from remote sensing data: The case of Ibadan metropolitan area, Nigeria. Humanity&Social Sciences Journal, 1(1):42–64.
  • 26. Parker, B. (2002). Planning analysis: calculating growth rates.
  • 27. Rahman, M. T. (2016). Detection of land use/land cover changes and urban sprawl in Al-Khobar, Saudi Arabia: An analysis of multi-temporal remote sensing data. ISPRS International Journal of Geo-Information, 5(2):15, doi:10.3390/ijgi5020015.
  • 28. Rahman, M. T., Aldosary, A. S., Mortoja, M., et al. (2017). Modeling future land cover changes and their effects on the land surface temperatures in the Saudi Arabian eastern coastal city of Dammam. Land, 6(2):36, doi:10.3390/land6020036.
  • 29. Rimal, B., Sloan, S., Keshtkar, H., Sharma, R., Rijal, S., and Shrestha, U. B. (2020). Patterns of Historical and Future Urban Expansion in Nepal. Remote Sensing, 12(4):628, doi:10.3390/rs12040628.
  • 30. Rimal, B., Zhang, L., Keshtkar, H., Haack, B. N., Rijal, S., and Zhang, P. (2018). Land use/land cover dynamics and modeling of urban land expansion by the integration of cellular automata and Markov chain. ISPRS International Journal of Geo-Information, 7(4):154, doi:10.3390/ijgi7040154.
  • 31. Sahana, M., Hong, H., and Sajjad, H. (2018). Analyzing urban spatial patterns and trend of urban growth using urban sprawl matrix: A study on Kolkata urban agglomera tion, India. Science of the Total Environment, 628:1557–1566, doi:10.1016/j.scitotenv.2018.02.170.
  • 32. Salghuna, N., Prasad, P. R. C., and Kumari, J. A. (2018). Assessing the impact of land use and land cover changes on the remnant patches of Kondapalli reserve forest of the Eastern Ghats, Andhra Pradesh, India. The Egyptian Journal of Remote Sensing and Space Science, 21(3):419–429, doi:10.1016/j.ejrs.2018.01.005.
  • 33. Sang, L., Zhang, C., Yang, J., Zhu, D., and Yun, W. (2011). Simulation of land use spatial pattern of towns and villages based on CA–Markov model. Mathematical and Computer Modelling, 54(3-4):938–943, doi:10.1016/j.mcm.2010.11.019.
  • 34. Schaeffer, B. A., Schaeffer, K. G., Keith, D., Lunetta, R. S., Conmy, R., and Gould, R. W. (2013). Barriers to adopting satellite remote sensing for water quality management. International Journal of Remote Sensing, 34(21):7534–7544, doi:10.1080/01431161.2013.823524.
  • 35. Silva, J. S., da Silva, R. M., and Santos, C. A. G. (2018). Spatiotemporal impact of land use/land cover changes on urban heat islands: A case study of Paço do Lumiar, Brazil. Building and Environment, 136:279–292, doi:10.1016/j.buildenv.2018.03.041.
  • 36. Yeates, M. and Garner, B. J. (1976). The north American city. HarperCollins Publishers.
  • 37. Zhu, Z., Wulder, M. A., Roy, D. P., Woodcock, C. E., Hansen, M. C., Radeloff, V. C., Healey, S. P., Schaaf, C., Hostert, P., Strobl, P., et al. (2019). Benefits of the free and open Landsat data policy. Remote Sensing of Environment, 224:382–385, doi:10.1016/j.rse.2019.02.016.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-17c64e96-82db-4e3f-8fc2-8702a8aba472
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.