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Abstract
For several decades, Nigerian cities have been experiencing a decline in their biodiversity resulting from rapid land use
land cover (LULC) changes. Anticipating short/long-term consequences, this study hypothesised the effects of LULC
variables in Akure, a developing tropical rainforest city in south-west Nigeria. A differentiated trend of urban LULC was
determined over a period covering 1999–2019. The study showed the net change for bare land, built-up area, cultivated
land, forest cover and grassland over the two decades to be -292.68 km2, +325.79 km2, +88.65 km2, +8.62 km2 and

-131.38 km2, respectively. With a projected population increase of about 46.85%, the study identified that the built-up
land cover increased from 1.98% to 48.61%. The change detection analysis revealed an upsurge in built area class. The
expansion indicated a significant inverse correlation with the bare land class (50.97% to 8.66%) and grassland class
(36.33% to 17.94%) over the study period. The study observed that the land consumption rate (in hectares) steadily
increased by 0.00505, 0.00362 and 0.0687, in the year 1999, 2009 and 2019, respectively. This rate of increase is higher
than studies conducted in more populated cities. The Cellular Automata (CA) Markovian analysis predicted a 37.92%
growth of the study area will be the built-up area in the next two decades (2039). The 20-year prediction for Akure
built-up area is within range when compared to CA Markov prediction for other cities across the globe. The findings of
this study will guide future planning for rational LULC evaluation.
Key words: LULC, change detection, Landsat, Cellular Automata Markov (CAM) model, Nigeria

1 Introduction

Land use land cover (LULC) change is described as an ecosyste-
mic transformation of existing land use mainly triggered by po-
pulation rural–urban migration, which remains a complex phe-
nomenon across developing cities like Nigeria (Adepoju, 2018;
Sahana et al., 2018). These concerns on the ecosystem are esca-
lated by the rising human population, resulting in increasing
built-up territories over a stagnant small section of the global
terrestrial surface (Bhat et al., 2017).

The LULC process evaluates the variation of the physical
land surface properties, as it shifts from one LULC to another.
This shift, if persistent over time, eventually triggers an LULC
conversion that can be formulated for forecasting/prediction
Joshi et al. (2016). The evaluation of territorial land use serves

as an interface between human occupations and the ecosystem,
especially as it affects planning policies for LULC mitigation
(Silva et al., 2018). The changes in land use are dependent on
the influence and significant impact of human-induced acti-
vities on the natural habitat (Rimal et al., 2018). The forecas-
ting/prediction serves as an indicator for evaluating and com-
prehending the LULC processes and impending impacts for sus-
tainable developments (Hossen et al., 2018).

Nigeria has been recording struggling cities with a rising
population that continues to affect its territorial LULC trans-
formations (Adepoju, 2018; Balogun et al., 2011; Bello et al.,
2014; Oloukoi et al., 2014; Oluseyi, 2006). This greener pasture
migration is a contributing factor to LULC changes. The chal-
lenge is triggered by unprecedented population increase, rising
unemployment rate, increasing poverty levels, all putting pres-
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sure on the existing LULC in Nigerian cities (Nnaemeka-Okeke,
2016; Olujimi and Gbadamosi, 2007). Efforts to enforce regula-
tion of LULC across Nigerian cities are embedded in the revised
CAP L.5 Law of the Federation of Nigeria (LFN) of 2004 by po-
licymakers. However, the relaxed attitude has resulted in the
continued violation of the existing LULC variables (Nnaemeka-
Okeke, 2016).

Over the years, the application of remotely sensed (RS)
technology for LULC monitoring has been quite promising. The
RS technology has become a vital instrument that is adapted
to assist stakeholders to evaluate and pre-empt LULC as they
occur over time. For developing cities with limited capabili-
ties, advances in RS technologies are contributing to their sub-
stantial improvement in environmental resource monitoring-
oriented researches (Aliyu and Botai, 2018b,a; Bello et al., 2014;
Oloukoi et al., 2014). The findings obtained from the readily
available RS datasets have continued to provide stakeholders
with a better grasp and informed position for current and fu-
ture policy plans (Aliyu and Botai, 2018a; Mahboob et al., 2015;
Schaeffer et al., 2013).

Studies have utilised the available standardised RS datasets
for temporal investigation of LULC across different developing
regions of the globe (Bhat et al., 2017; Mubako et al., 2018; Rah-
man, 2016; Rimal et al., 2020). The accessibility to geoinfor-
matics capabilities continues to ease the possibilities of resear-
chers to analyse, model and predict LULC changes, especially
over developing cities with limited data resources. The techni-
ques utilised for LULC monitoring have helped in the design of
various modelling algorithms such as linear regression (Hu and
Lo, 2007), artificial neural networks (Maithani, 2009), multi-
variate regression (Al-sharif and Pradhan, 2016) and cellular
automata (CA) / Markov chain (Mondal et al., 2017).

Studies have established that the present rate of LULC chan-
ges across Nigerian cities might result in a multitude of en-
vironmental problems, ranging from social segregation to en-
vironmental degradations. Anticipating short- or long-term
consequences, this study hypothesised the effects of LULC
changes for the city of Akure. The selection of this study area is
based on the fact that it is the key link connecting the northern
and eastern regions of Nigeria. Additionally, a past study has
shown that the dense anthropogenic activity in the city con-
tinues to negatively affect the city’s sustainable development.
The rising expansion of Akure LULC is reported to be deterio-
rating as well as depleting available environmental natural re-
sources (Balogun et al., 2011). To evaluate requirements of the
current growth on existing Akure LULC as well as planning for
future changes, there is the need for consistent evaluation of
the city development for rational LULC change assessment. It
is for this reason that this study aimed to conduct a post-1999
LULC analysis for the tropical rainforest city of Akure, Nigeria.
This will be achieved via three objectives:
• classify epochal land cover pattern,
• determine land consumption rate (LCR) / land absorption

coefficient (LAC),
• project land cover over the next 20 years.

The manuscript is drafted to comprise of four sections.
Section 1 presents the introduction. Section 2 describes that
study area, datasets and methods. Section 3 presents the re-
sults with discussions, and Section 4 highlights the study con-
clusion.

2 Materials and methods

2.1 Study area

The study area is Akure, the capital of Ondo State. It is situ-
ated in the south-west geopolitical zone of Nigeria (Figure 1).
Akure comprises of two local government areas (LGAs), namely,
Akure-North LGA and Akure-South LGA. The size of the study
area is approximately 1,006.864 km2. The city has a popula-
tion of 484,798 based on the population census that was con-
ducted in the year 2006 with a fixed annual growth rate of 3.0%
(NPC, 2010). Akure lies between the geographical coordina-
tes of 7°3’40"–7°26’38" north and 5°5’11"–5°29’39" east. The
study area is about 700 km southwest of Abuja (Nigeria’s capi-
tal city) and 311 km north of Lagos State (Nigeria’s megacity).
The people of the city are predominantly from the Yorubas tribe.
They are broadly classified into the following dialectical groups:
Akoko, Owo, Ondo, Ikale, Ilaje and Akure. The residential dis-
tricts are of varying density; some areas, such as Arakale, Ay-
edun Quarters, Ijoka and Oja-Oba, consist of over 200 persons
per hectare, while areas such as Ijapo Estate, Alagbaka Estate,
Avenue and Idofin have between 60 and 100 people per hectare.
The annual temperature and relative humidity average are re-
ported to be 25.2◦C and 77.1%, respectively. Its vegetation is ca-
tegorised as the tropical rainforest type, with the driest month
being December. The major agricultural cash produce in the
study area are cocoa and tobacco (Balogun et al., 2011).

2.2 Datasets

The following datasets were obtained for this study. A georefe-
renced (GCS Minna/Zone 31) administrative map of Akure was
obtained from Nigeria’s Office of the Surveyor-General of the
Federation (OSGOF). The georeferenced administrative map of
Akure was obtained to determine the extent of the study area
from the Landsat image tile. Landsat 7 Enhanced Thematic
Mapper Plus (ETM+) images of the year 1999 and 2009, Land-
sat 8 Operational Land Imager (OLI) image of the year 2019
datasets, all 30 m spatial resolution, were obtained from the
United States Geological Survey (USGS) EarthExplorer website.
The study datasets were adopted to evaluate the LULC change
over a 20-year study period using a 10-year interval. The ini-
tial intention was to evaluate at the five-year interval, but there
were no data for years 2004 and 2014 based on the data crite-
ria adopted for the study. The imageries used were selected
by adopting the additional criteria (cloud cover < 20%). The
timestamp for the three Landsat datasets coincides with the
Harmattan (dry) season in the study area. The reason for the
adoption of the dry season is to control the datasets for exag-
geration of vegetation that might arise as a result of consis-
tent rainfall. The Landsat path and row for Akure are (190, 55).
This parameter was utilised to identify and download the requi-
red from the URL (http://earthexplorer.usgs.gov). The Landsat
imageries were downloaded to evaluate the LULC, change de-
tection and future prediction of Akure, Nigeria. The medium-
resolution Landsat dataset was adopted based on its free his-
toric archive and open data policy. The Landsat data have de-
monstrated synchronised relevance in terms of processing and
dissemination with ground systems (Zhu et al., 2019). The
timestamps for Landsat images utilised for the study are 13
December 1999, 22 November 2009 and 10 January 2019 (as
can be observed on the scene identifier in Table 1). For the
change detection analysis, the supervised classification techni-
que was adopted via the maximum likelihood algorithm (MLA).
The valid supervised classification MLA technique has been bro-
adly employed to analyse LULC changes (Sahana et al., 2018).
To achieve the task, the following software was utilised: the

http://earthexplorer.usgs.gov/
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Figure 1. Study site, (a) map of Nigeria with the riverine area in black; (b) map of Ondo State; (c) Akure city
Table 1. Description of Landsat datasets

S/N Instrument Scene Identifier Bands Stacked Cloud Cover (%) Geometric RMSE Model (m)
1 Landsat 7 ETM+ LE71900551999347AGS01 1–8 11.00 3.59
2 Landsat 7 ETM+ LE71900552009326ASN00 1–8 8.00 4.22
3 Landsat 8 OLI LC81900552019010LGN00 1–9 13.02 7.52

Erdas Imagine v9.2 was adopted for band combination adjus-
tment, layer stacking, supervised classification and accuracy
assessment. The ArcGIS v10.3 was adopted for the gap filling
of the 2009 Landsat image, clipping of study area/layout pre-
sentation. The IDRISI Taiga v16.0 was utilised for LULC change
detection and future prediction.

2.3 Methodology

The methodology adopted for the study is illustrated in Figure 2.
A detailed explanation of study area clipping, strip-line gap
filling, atmospheric correction, supervised classification, accu-
racy assessment and change detection procedures are stated
below.
Gap filling of strip lines
The producer georeferenced Landsat 7 ETM+ imagery for the
year 2009 was downloaded with strip lines. The strip lines are
as a result of the failed scan line corrector attributed to Land-
sat 7 ETM+ datasets obtained after 31 May 2003. The Landsat
(LE71900552009326ASN00) data attribute indicated a scan gap
interpolation of two for the 2009 imagery. A total of 28 strip
lines were identified, accounting for 11.7% of the demarcated
study area. The strip lines were gap-filled using the ArcGIS
10.3 software. This was achieved with the Landsat toolbox ‘fix
Landsat 7 scan line error’. The procedure was performed for
each band 1–8 before the atmospheric correction procedure.

Atmospheric/geometric correction
The atmospheric correction for the Landsat dataset was per-
formed using the following steps. The digital number (DN) of
each band was first converted to radiance at the level of top-of-
atmosphere (TOA) radiance. The TOA radiance was then con-
verted to TOA reflectance. The procedure was achieved using
the raster calculator in the ArcGIS environment. The relevant
metadata required for the procedure were obtained from the
downloaded MTL text file described by Chavez (1996). For pos-
sible geometric distortions, the Landsat scenes utilised for this
study were within the prescribed image-to-image tolerances
of ≤ 12 m geometric root mean square error (RMSE) (Table 1).
Supervised image classification
Supervised classification was performed by developing a
spectral signature of the verified land-use classes based on the
Anderson (1976) classification regime. An accuracy assessment
was performed to evaluate the conformity between the ben-
chmark expected to be correct and the classified image pixels
of unknown quality. Landsat 7 ETM+ and Landsat 8 OLI data
were used to derive the LULC types for the study period using
the Erdas Imagine 9.2 software. Before the supervised image
classification, a false colour composite (FCC) analysis was per-
formed to augment the ground-truth LULC information. This
was achieved using the bands 4, 3, 2 in Landsat 7 ETM+ and
bands 5, 4, 3 in Landsat 8 OLI. The five classes utilised are as
follows: bare land, built-up area, cultivated land, forest cover
and grassland. Bareland is any area with exposed land surface
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Figure 2. Methodological chart
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or rock outcrops. Built-up area is any area with asphalt or con-
crete roads. Cultivated land refers to an area under cultivation
and intensive irrigation of crops pavements, buildings or hou-
ses. Forest cover is an area of dense tree cover with a thick
closed canopy. Grassland is any non-vegetated, uncultivated
farmland and open space. The rule-based feature extraction
method combined with ground-truthed information was adop-
ted for this purpose. The MLA was adopted for the supervised
classification. It adopts the Bayesian decision rule based on the
probability that a pixel belongs to a particular class. It is one
of the most adopted and validated methods of classification in
remote sensing (Hossen et al., 2018; Sahana et al., 2018).
Accuracy assessment
The accuracy assessment is performed to evaluate the degree
of misclassification among LULCs to the user classified image
from collected ground (training) data with the producer infor-
mation. A total of 181 training data samples were obtained as
reference samples over the study area for the individual Land-
sat images. Two methods of assessment were utilised to evalu-
ate the accuracy of the classification procedure; the error (con-
fusion) matrix and Kappa statistics (Table 2).
Change detection analysis
Change detection entails a timely and accurate assessment of
the changes in the LULC variables at periodic intervals. In this
study, change detection analysis was performed for the five
LULC classes at intervals, 1999–2009, 2009–2019 and 1999–
2019. Three change maps were produced to display the change
of the classified images. The change detection statistics were
performed using the IDRISI software.

The LAC and LCR was determined using equations (1) and
(2) (Yeates and Garner, 1976). To compute the LCR/LAC, the
following variables are required. They include the land area of
the city (built-up) in hectares and the corresponding popula-
tion size, for the respective years of interest. The estimated
built area of the city for the epoch of interest was obtained
using the classification distribution (Table 3).

LCR = CityExtentinHectares(A)
Population(P) , (1)

LAC = A2 – A1
P2 – P1 , (2)

where A1 is the extent (in hectares) for the early year, A2 is
the extent (in hectares) for the later year, P1 is the population
figure for the early year; P2 is the population figure for the later
year.

The population size was estimated (Parker, 2002) using
the projected population equation (equation (3)) with the es-
tablishment census data of 2006 and the 3.0% growth rate for
the study area.

Pop(projected) = Pop(Known) ×
(

1 + AnnualGrowthRate
100

)T (3)

The built-up area class is the key determinant for evalua-
ting urban area growth. To formulate future urban area growth
for the study area, the CA Markov model was adopted to capture
the inherent spatio-temporal relationship based on the classi-
fied Landsat images. The CA Markov model analysis adopts
the preceding LULC to project future spatial distribution (Li-
ping et al., 2018).

The CA Markov model is one of the commonly used models
used for monitoring the stability of land-use developments via
future prediction. The model integrates CA with the Markov
chain to predict the LULC trends and characteristics over time
(Hamad et al., 2018). Equations (4) and (5) illustrates the com-

putation of predicted land use (Kumar et al., 2014).
S (t, t + 1) = Aij × S (t) (4)

where S(t) is the system status at the time t, S(t+1) is the system
status at the time of t+1; Aij is the transition probability matrix
computed using equation (5).

∥∥∥Aij∥∥∥ =

A1,1 A1,2 ... A1,N
A2,1 A2,2 .... A2,N
. . . .... .... ....
AN,1 AN,2 .... AN,N

 (5)

where 0 ≤ Aij ≤ 1 determines the probability of a pixel chan-
ging to another LULC or maintaining its original LULC.

The CA Markov module embedded on the IDRISI Software
(Sang et al., 2011) was utilised to generate the LULC prediction
map for the year 2039.

3 Results and discussions

3.1 Classification accuracy

An error (confusion) matrix was produced using cross-
tabulation for the identified land-cover classes (Table 2). The
matrix identified similarities between the producer accuracy
and user accuracy to inaccuracies during the supervised classi-
fication process. The overall accuracy of the supervised classifi-
cation was obtained to be 92.27% for the year 1999, 89.50% for
the year 2009 and 93.92% for the year 2019. This accuracy was
within the acceptable limits (> 75%). Additionally, the Kappa
statistics recorded are 0.89 for the year 1999, 0.84 for the year
2009 and 0.91 for the year 2019. KHisto and KLoc accuracy are
also indicated in Table 2.

3.2 LULC distribution

The distribution pattern of the changes in the spatio-temporal
LULC in Akure is displayed in Figure 3. The figure showed an
increasing proportion trend for the built-up land for the study
period. This development inversely affected the proportion of
bare land and grassland land covers for the period. This can
be to a steady 3% growth rate for the study area, as reported
by the National Population Commission (2010). Figures 3a–3c
revealed the LULC configuration of the study classified images
for the year 1999, 2009 and 2019, respectively.

Further analysis showed that bare land covered the largest
chunk of Akure in terms of percentage area for the year 1999.
It is followed by the grassland cover. The land-use gainer over
the study period (1999–2019) is built up with 48.61% from
1.98%. This output inversely correlates with the depleting ter-
ritory of the bare land cover (50.97% to 8.66%) and grassland
(36.33% to 17.94%) from 1999 to 2019, respectively (Table 3).
The rising trend of the built-up area class can be observed in
Figure 3. These impacts have incited competition to create an
avenue for accelerated acquisition of land area based on popu-
lation developments.

3.3 LULC change detection

Gains and losses
The gains/losses, net changes and contributors are presented
in Figure 4. In Figures 4a–4c, the green bar indicates the gain
per class in km2, while the loss (to the left) of each class is
displayed the purple.
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Table 2. Accuracy assessment of LULC for the study period
Classified Data Bare Land Built-Up Area Cultivated Land Forest Cover Grassland Total User Accuracy (%)

De
cem

ber
199

9

Bare Land 37 2 0 0 1 40 92.50
Built-Up Area 2 32 0 0 0 34 94.12
Cultivated Land 0 0 31 1 2 34 91.18
Forest Cover 1 1 2 34 0 38 89.47
Grassland 1 0 1 0 33 35 94.29
Total 41 35 34 35 36 181
Producer Accuracy (%) 90.24 91.43 91.18 97.14 91.67

Overall Accuracy = 92.27%; Kappa Statistics = 0.89; KHisto = 0.96; KLoc = 0.93

No
vem

ber
200

9

Bare Land 31 6 0 0 2 39 79.49
Built-Up Area 1 34 0 0 0 35 97.14
Cultivated Land 1 0 33 1 2 37 89.19
Forest Cover 0 0 1 30 2 33 90.91
Grassland 0 0 2 1 34 37 91.89
Total 33 40 36 32 40 181
Producer Accuracy (%) 93.34 85.00 91.67 93.75 85.00

Overall Accuracy = 89.50%; Kappa Statistics = 0.84; KHisto = 0.91; KLoc = 0.92

Jan
uar

y2
019

Bare Land 34 1 0 0 0 35 97.14
Built-Up Area 2 46 0 0 0 48 95.83
Cultivated Land 0 0 31 1 1 33 93.94
Forest Cover 1 1 1 29 0 32 90.63
Grassland 0 0 2 1 30 33 90.91
Total 37 48 34 31 31 181
Producer Accuracy (%) 91.89 95.83 91.18 93.55 96.77

Overall Accuracy = 93.92%; Kappa Statistics = 0.91; KHisto = 0.93; KLoc = 0.98

Table 3. Temporal change/percentage of land cover classes for the study period
Land Cover 1999 2009 2019

Area [km2] Area [%] Area [km2] Area [%] Area [km2] Area [%]
Bare Land 513.230 50.97 379.888 37.73 87.207 8.66
Built-Up Area 19.886 1.98 163.612 16.25 489.400 48.61
Cultivated Land 5.466 0.54 16.351 1.62 106.000 10.52
Forest Cover 102.445 10.18 135.024 13.41 143.644 14.27
Grassland 365.837 36.33 311.989 30.99 180.613 17.94
TOTAL 1,006.864 100.00 1,006.864 100.00 1,006.864 100.00

In Figure 4a, it can be observed that for the period 1999–
2009, bare land class lost 329.63 km2 and gained 196.29 km2,
built-up area class entirely gained 143.73 km2, cultivated land
class lost 1.24 km2 and gained 12.13 km2, forest cover class lost
62.29 km2 and gained 94.87 km2 and grassland cover class lost
238.49 km2 and gained 184.64 km2. In Figure 4b, the gain and
loss of LULC from 2009 to 2019 we derived to be bare land lost
351.15 km2 and gained 58.47 km2, the built-up area lost 19.95
km2 and gained 345.74 km2, cultivated land entirely gained
89.65 km2, forest cover lost 103.59 km2 and gained 112.21 km2
and grassland cover lost 265.66 km2 and gained 134.28 km2.
The loss and gain from 1999–2019 (Figure 4c) showed that bare
land lost 474.21 km2 and gained 48.19 km2, the built-up area
gained 469.51 km2, cultivated land entirely gained 100.53 km2,
forest cover gained 167.54 km2 but lost 126.34 km2. Grassland
cover lost 278.15 km2 and gained 92.93 km2. The steady incre-
ase in the forest cover can be attributed to climatic variables as
well as the population’s cultural belief against forest intrusion.

Figures 4d–4f illustrates the net changes in terms of loss
(negative) and gain (positive) along the x-axis for the five
LULCs of interest between 1999 and 2009 (Figure 4d), 2009
and 2019 (Figure 4e) and 1999 and 2019 (Figure 4f). For
the respective intervals, ‘bare land’ recorded -133.34 km2, -
292.68 km2 and -426.02 km2; ‘built-up area’ recorded +143.73
km2, +325.79 km2 and +469.51 km2; ‘cultivated land’ recorded
+10.89 km2, +89.65 km2 and +100.53 km2; ‘forest cover’ re-

corded +32.58 km2, +8.62 km2 and +41.20km2 and ‘grassland’
recorded -53.85 km2, -131.38 km2 and -185.22 km2. Figures
4g–4i identified bare land and grassland as the main contribu-
tors to the consistent increase in the built-up area class across
the study intervals.
Land absorption coefficient/land consumption rate
The projected population estimates for the year 1999, 2009 and
2019 were computed as 394,176, 529,752 and 711,942, respecti-
vely (National Population Commission, 2010). Adopting the
projected population size for the LCR/LAC analysis, it can be
observed that the LCRs for the year 1999, 2009 and 2019 were
computed (in hectares) to be 0.00505, 0.00362 and 0.0687, re-
spectively. These values revealed there is a steady rise of the
land consumed as a result of projected population growth. The
LAC was also determined. With equation (2), the computed
result revealed an LAC of 0.1635 from the years 2009 to 2019.
Also, the absorption coefficient for 1999–2019 was computed to
be 0.127. These LAC values obtained were higher than the coef-
ficients reported by Salghuna et al. (2018) for Andhra Pradesh
in India.
Urban area projection
Before the prediction, a genetic optimisation from the year
1999 to the year 2019 was performed. The 2009 image was used
to validate the prediction of the CA Markov by comparing the
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(a) December 1999

(b) November 2009

(c) January 2019
Figure 3. Spatial distribution (classified image) of the land cover ofAkure

predicted LULC in 2009 and the actual supervised classification
for the year 2009. The overall Kappa coefficient was derived to
be 0.864. This value was within the acceptable limits (Kappa
index of agreement); thus, the prediction simulation was em-
barked upon. The CA Markovian analysis predicted the changes
that are likely to occur over the next two decades (2039). It pro-
jected that about 675.011km2 of the study will be built-up area
(Figure 5). The predicted built-up area increase (+37.92%) for
this study was within limit when compared with the +27.31%
increase for Damman coastal city, Saudi Arabia (Rahman et al.,
2017). By contrast, the predicted built-up area increase was far
less than the +111.34% for the Tarai region, Nepal (Rimal et al.,
2020), and the +300% for Dhaka, Bangladesh (Ahmed et al.,
2013).

From Figure 5, it can be deduced that the rising uncoordina-
ted urban growth in Akure is very likely to translate to declined
biodiversity and increased urban air pollution from increased,
unregulated anthropogenic activities. This is, therefore, likely
to expose the residents to respiratory health challenges as well
as directly influence the city’s urban heat island (UHI) analysis.

4 Conclusions

This study adopted a validated procedure for evaluating the
spatio-temporal pattern of LULC variables in Akure, Nigeria.
The study datasets were selected for two decades (1999–2019).
The pattern of LULC changes was established for the purpose
validation and future prediction to the year 2039. The study
result displayed significant changes (increase and decrease) of
the LULC variables assessed for the study. The study has iden-
tified a periodic increase with the built-up area class. The
studied LULC results showed that the net percentage change
for bare land, built-up area, cultivated land, forest cover and
grassland over the study period (1999–2019) to be -292.68
km2, +325.79 km2, +88.65 km2, +8.62km2 and -131.38 km2,
respectively. The study analysis also revealed that the antici-
pated percentage change in built-up area from the year 2019
to 2039 (projected) will increase by 37.92%. The percentage
increase of the predicted built-up area is within range when
compared to other cities across the globe. The findings of the
study serve as feasibility, thus will be beneficial to Nigerian
policymakers who must begin to mitigate unregulated urban
expansion.

It is worth noting the limitation of the study. Due to una-
vailability of datasets, the following factors were not taken
into consideration. They include climatic, geophysical and
socio-economic. The adoption of a medium-resolution satel-
lite image (Landsat 2009) exposed scan-line error, MLA for
the supervised classification and LAC/LCR analysis dependent
on population projection (due to the unavailability of recent po-
pulation census data across Nigeria) could cause differences of
simulated results/predictions. Further investigation could con-
sider other classification algorithms such as the random forest
or support vector machine, as well as examine indicators for
the rapid urban expansion. Within the identified limitations,
the validated procedure adopted for this study was within the
range of result with comparative studies, thus will expedite the
mitigating capabilities for policymakers to address the challen-
ges identified with the present Akure LULC. The findings of this
study will guide future planning for rational LULC evaluation.
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