PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

A deep Residual U-Net convolutional neural network for automated lung segmentation in computed tomography images

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To improve the early diagnosis and treatment of lung diseases automated lung segmentation from CT images is a crucial task for clinical decision. The segmentation of the lung region from the CT scans is a very challenging task due to the irregular shape and size of lungs, low contrast and fuzzy boundaries of the lung. The manual segmentation of lung CT images is a laborious task. Therefore, various approaches are suggested by the researcher in the recent past for the automated lung segmentation. However, the existing approaches either utilize low-level handcraft features or CNN based Fully Convolutional Networks. The low-level hand-craft feature-based approaches lead to poor generalization, while the shallower networks are unable to extract more discriminative features. Hence, in this study, we have implemented a deep learning-based architecture called Residual U-Net with a false-positive removal algorithm for lung CT segmentation. Here, we have suggested that learning from a substantially deeper network with residual units can extract more discriminative feature representation as compared to shallow network for lung segmentation. To take full advantage of the deeper network, we have utilized a set of schemes to ensure efficient training. First, we have implemented a U-Net architecture with residual block to overcome the problem of performance degradation. Further, various data augmentation techniques are utilized to improve the generalization capability of the proposed method. The experimental results show that the proposed method achieved competitive results over the existing methods with DSC of 98.63%, 99.62% and 98.68% for LUNA16, VESSEL12 and HUG-ILD dataset respectively.
Twórcy
autor
  • Department of Electrical Engineering, NIT Raipur, Chhattisgarh, India
  • Department of Electrical Engineering, NIT Raipur, Chhattisgarh 492010, India
autor
  • Department of Electrical Engineering, NIT Raipur, Chhattisgarh, India
  • Department of Electrical Engineering, NIT Raipur, Chhattisgarh, India
Bibliografia
  • [1] Hu S, Hoffman EA, Reinhardt JM. Automatic lung segmentation for accurate quantitation of volumetric X-ray CT images. IEEE Trans Med Imaging 2001. http://dx.doi.org/10.1109/42.929615.
  • [2] Wang J, Li F, Li Q. Automated segmentation of lungs with severe interstitial lung disease in CT. Med Phys 2009. http://dx.doi.org/10.1118/1.3222872.
  • [3] Mansoor A, Bagci U, Xu Z, Foster B, Olivier KN, Elinoff JM, et al. A generic approach to pathological lung segmentation. IEEE Trans Med Imaging 2014. http://dx.doi.org/10.1109/TMI.2014.2337057.
  • [4] Gill G, Beichel RR. An approach for reducing the error rate in automated lung segmentation. Comput Biol Med 2016. http://dx.doi.org/10.1016/j.compbiomed.2016.06.022.
  • [5] Sluimer I, Prokop M, Van Ginneken B. Toward automated segmentation of the pathological lung in CT. IEEE Trans Med Imaging 2005. http://dx.doi.org/10.1109/TMI.2005.851757.
  • [6] Zhou J, Yan Z, Lasio G, Huang J, Zhang B, Sharma N, et al. Automated compromised right lung segmentation method using a robust atlas-based active volume model with sparse shape composition prior in CT. Comput Med Imaging Graph 2015. http://dx.doi.org/10.1016/j.compmedimag.2015.07.003.
  • [7] Sun S, Bauer C, Beichel R. Automated 3-D segmentation of lungs with lung cancer in CT data using a novel robust active shape model approach. IEEE Trans Med Imaging 2012. http://dx.doi.org/10.1109/TMI.2011.2171357.
  • [8] Van Rikxoort EM, Prokop M, De Hoop B, Viergever MA, Pluim JPW, Van Ginneken B. Automatic segmentation of pulmonary lobes robust against incomplete fissures. IEEE Trans Med Imaging 2010. http://dx.doi.org/10.1109/TMI.2010.2044799.
  • [9] Li Z, Hoffman EA, Reinhardt JM. Atlas-driven lung lobe segmentation in volumetric X-ray CT images. IEEE Trans Med Imaging 2006. http://dx.doi.org/10.1109/TMI.2005.859209.
  • [10] Mansoor A, Bagci U, Foster B, Xu Z, Papadakis GZ, Folio LR, et al. Segmentation and image analysis of abnormal lungs at CT: current approaches, challenges, and future trends. Radiographics 2015. http://dx.doi.org/10.1148/rg.2015140232.
  • [11] Bagci U, Kramer-Marek G, Mollura DJ. Automated computer quantification of breast cancer in small-animal models using PET-guided MR image co-segmentation. EJNMMI Res 2013. http://dx.doi.org/10.1186/2191-219X-3-49.
  • [12] Soliman A, Khalifa F, Elnakib A, El-Ghar MA, Dunlap N, Wang B, et al. Accurate lungs segmentation on CT chest images by adaptive appearance-guided shape modeling. IEEE Trans Med Imaging 2017. http://dx.doi.org/10.1109/TMI.2016.2606370.
  • [13] Jain AK, Duin RPW, Mao J. Statistical pattern recognition: A review. IEEE Trans Pattern Anal Mach Intell 2000. http://dx.doi.org/10.1109/34.824819.
  • [14] Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) [204TD$DIF]2015. http://dx.doi.org/10.1007/978-3-319-24574-4_28.
  • [15] Badrinarayanan V, Kendall A, Cipolla R. SegNet: a deep convolutional encoder–decoder architecture for image segmentation. IEEE Trans Pattern Anal Mach Intell 2017. http://dx.doi.org/10.1109/TPAMI.2016.2644615.
  • [16] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit [206TD$DIF]2015. http://dx.doi.org/10.1109/CVPR.2015.7298965.
  • [17] Alves JH, Neto PMM, Oliveira LF. Extracting lungs from CT images using fully convolutional networks. Proc Int Joint Conf Neural Networks [207TD$DIF]2018. http://dx.doi.org/10.1109/IJCNN.2018.8489223.
  • [18] Alom MZ, Hasan M, Yakopcic C, Taha TM, Asari VK. Recurrent residual convolutional neural network based on u-net (r2u-net) for medical image segmentation. ArXivPrepr ArXiv180206955; 2018.
  • [19] He K, Zhang X, Ren S, Sun J. ResNet. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit 2016. http://dx.doi.org/10.1109/CVPR.2016.90.
  • [20] Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift. 32nd Int Conf Mach Learn ICML 2015 [209TD$DIF]2015.
  • [21] Yu L, Chen H, Dou Q, Qin J, Heng PA. Automated melanoma recognition in dermoscopy images via very deep residual networks. IEEE Trans Med Imaging 2017. http://dx.doi.org/10.1109/TMI.2016.2642839.
  • [22] Doshi J. Residual inception skip network for binary segmentation. IEEE Comput Soc Conf Comput Vis Pattern Recognit Work [21TD$DIF]2018. http://dx.doi.org/10.1109/CVPRW.2018.00037.
  • [23] Xu M, Qi S, Yue Y, Teng Y, Xu L, Yao Y, et al. Segmentation of lung parenchyma in CT images using CNN trained with the clustering algorithm generated dataset. Biomed Eng Online 2019. http://dx.doi.org/10.1186/s12938-018-0619-9.
  • [24] Chollet F, et al. Keras: The python deep learning library 2015; 2019.
  • [25] Rudyanto RD, Kerkstra S, van Rikxoort EM, Fetita C, Brillet PY, Lefevre C, et al. Comparing algorithms for automated vessel segmentation in computed tomography scans of the lung: The VESSEL12 study. Med Image Anal 2014. http://dx.doi.org/10.1016/j.media.2014.07.003.
  • [26] Depeursinge A, Vargas A, Platon A, Geissbuhler A, Poletti PA, Müller H. Building a reference multimedia database for interstitial lung diseases. Comput Med Imaging Graph 2012. http://dx.doi.org/10.1016/j.compmedimag.2011.07.003.
  • [27] He K, Zhang X, Ren S, Sun J. Delving deep into rectifiers: surpassing human-level performance on imagenet classification. Proc IEEE Int Conf Comput Vis [212TD$DIF]2015. http://dx.doi.org/10.1109/ICCV.2015.123.
  • [28] Tieleman T, Hinton G. ‘‘RMSprop optimizer.’’ https://WwwCsTorontoEdu/_tijmen/Csc321/Slides/Lecture_slides_lec6Pdf 2012. https://www.coursera.org/learn/neural-networks/lecture/YQHki/rmsprop-divide-the-gradient-by-a-runningaverage-of-its-recent-magnitude.
  • [29] Chae SH, Moon HM, Chung Y, Shin JH, Pan SB. Automatic lung segmentation for large-scale medical image management. Multimed Tools Appl 2016. http://dx.doi.org/10.1007/s11042-014-2201-1.
  • [30] Dash M, Londhe ND, Ghosh S, Semwal A, Sonawane RS. PsLSNet: automated psoriasis skin lesion segmentation using modified U-Net-based fully convolutional network. Biomed Signal Process Control 2019. http://dx.doi.org/10.1016/j.bspc.2019.04.002.
  • [31] Kingma DP, Ba JL. Adam: a method for stochastic optimization. 3rd Int Conf Learn Represent ICLR 2015 – Conf Track Proc [215TD$DIF][191TD$DIF]2015.
  • [32] Graham S, Vu QD, Raza SEA, Azam A, Tsang YW, Kwak JT, et al. Hover-Net: simultaneous segmentation and classification of nuclei in multi-tissue histology images. Med Image Anal 2019. http://dx.doi.org/10.1016/j.media.2019.10153.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-17c53b13-7e03-44ef-adb1-866d63fb3d4f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.