PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determinants of public debt in EU countries

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Determinanty długu publicznego w krajach UE
Języki publikacji
EN
Abstrakty
EN
Due to the Covid-19 pandemic, governments must support their economy to prevent a possible recession which will lead to an increase in public debt. Therefore, it is necessary to know important determinants of public debt. This paper provides an analysis of public debt determinants. The main aim of the article is to identify the impact of specific variables on the level of public debt in EU countries by using econometric methods. The article analyses studies that focus on determinants of public debt, and it defines ten fundamental independent (explanatory) variables. Panel data regression model is used to monitor the impact of these variables on an independent variable - public debt, while it uses data from 1999 to 2019. The model’s results show that the growth of variables, such as current account balance of payments, budget balance, public administration investments, inflation rate, and GDP growth, lead to reducing public debt in EU countries. On the other hand, the increase in variables, such as annual population density change and budget expenditure, leads to public debt growth. The impact of both, unemployment rate and purchasing power parity, on public debt is insignificant based on the study results.
PL
W związku z pandemią Covid-19 rządy muszą wspierać swoją gospodarkę, aby zapobiec ewentualnej recesji, która doprowadzi do wzrostu długu publicznego. Dlatego konieczna jest znajomość ważnych determinant długu publicznego. Artykuł zawiera analizę determinant długu publicznego. Głównym celem artykułu jest identyfikacja wpływu poszczególnych zmiennych na poziom długu publicznego w krajach UE za pomocą metod ekonometrycznych. Artykuł analizuje badania, które koncentrują się na determinantach długu publicznego i definiuje dziesięć podstawowych zmiennych niezależnych (objaśniających). Panelowy model regresji danych służy do monitorowania wpływu tych zmiennych na zmienną niezależną - dług publiczny, natomiast wykorzystuje dane z lat 1999- 2019. Wyniki modelu pokazują, że wzrost zmiennych, takich jak bilans płatniczy obrotów bieżących, saldo budżetowe , inwestycje administracji publicznej, inflacja i wzrost PKB prowadzą do redukcji długu publicznego w krajach UE. Z drugiej strony wzrost zmiennych, takich jak roczna zmiana gęstości zaludnienia i wydatki budżetowe, prowadzi do wzrostu długu publicznego. Wpływ zarówno stopy bezrobocia, jak i parytetu siły nabywczej na dług publiczny jest, jak wynika z wyników badań, nieznaczny.
Rocznik
Strony
406--424
Opis fizyczny
Bibliogr. 63 poz., rys., tab.
Twórcy
autor
  • Technical University of Košice, Faculty of Economics
  • Technical University of Košice, Faculty of Economics
  • Technical University of Košice, Faculty of Mining, Ecology, Process Control and Geotechnologies
  • Technical University of Košice, Faculty of Economics
Bibliografia
  • 1.Afonso, A., Jalle S, J., (2011). Measuring of Success of Fiscal Consolidations. Universidate Técnica de Lisboa. Working Paper No. 22/2011.
  • 2.Agoraki, M.-E. K., Kardara, S., Kollintzas, T. And Kouretas, G.P., (2018). Debt-to-GDP Changes and the Great Recession: European Periphery versus European Core. The 17th Conference on Research on Economic Theory and Econometrics, July 13-17, Tinos, Greece.
  • 3.Alesina, A., Favero, C. and Giavazzi, F., (2012). The Output Effect of Fiscal Consolidations. National Bureau of Economic Research. Cambridge Working Paper No. 18336.
  • 4.Awan, R. U., Anjum, A. and Rahim, S., (2015). An econometric analysis of determinants of external debt in Pakistan. British Journal of Economics, Management & Trade, 5(4), 382 - 391.
  • 5.Bader, M, Magableh, I. K., (2009). An enquiry into the main determinants of public debt in Jordan: An econometric study. Dirasat, Administrative Sciences, 36(1), 181-190.
  • 6.Baltagi, B. H., Liu, L., (2008). Testing for random effects and spatial lag dependence in panel data models. Statistics & Probability Letters. 78(102), 1-18.
  • 7.Bido, D., da Silva, D. and Ringle, C., (2015). Structural equation modeling with the SmartPLS. Brazilian Journal of Marketing, 13(2), 1-18.
  • 8.Checherita, C., Rother, P., (2010). The Impact of High and Growing Government Debt on Economic Growth - an Empirical Investigation for the Euro Area. ECB. Working Paper No. 1237.
  • 9.Civelek, M., Gajdka, K., Světlík, J. and Vavrečka, V., (2020). Differences in the usage of online marketing and social media tools: evidence from Czech, Slovakian and Hungarian SMEs. Equilibrium. Quarterly Journal of Economics and Economic Policy, 15(3), 537-563.
  • 10.Civelek, M., Ključnikov, A., Fialova, V., Folvarčná, A. and Stoch, M., (2021). How innovativeness of family-owned SMEs differ depending on their characteristics? Equilibrium. Quarterly Journal of Economics and Economic Policy, 16(2), 413-428.
  • 11.Civelek, M., Ključnikov, A., Krajčík, V. and Žufan, J., (2019). The Importance of Discount Rate and Trustfulness of a Local Currency for the Development of Local Tourism. Journal of Tourism and Services, 10(19), 77-92.
  • 12.Cooray, A. Dzhumashev, R. and Scneider, F., (2017). How Does Corruption Affect Public Debt? An Empirical Analysis, World Development, 90, 112-127.
  • 13.Creel, J., Sterdyniak, H., (2012). Faut-il réduire la dette publique ? Lettre de l’OFCE, Paris, France.
  • 14.Croissant, Y., Millo, G., (2008). Panel data econometrics in R: The plm package. Journal of statistical software, 27(2), 1-43.
  • 15.Drazen, A., (2000). Political economy in macroeconomics, Princeton: Princeton University Press
  • 16.Drukker, D. M., (2003). Testing for serial correlation in linear panel-data models. The Stata journal, 3(2), 168-177.
  • 17.Dumitrescu, B.A., (2014). The public debt in Romania factors of influence, scenarios for the future and a sustainability analysis considering both a finite and infinite time horizon. Procedia Economics and Finance, 8, 283-292.
  • 18.Durda, L., Ključnikov, A., (2019). Social networks in entrepreneurial startups development. Economics and Sociology, 12(3), 192-208.
  • 19.Dvorský, J., Čepel, M., Kotásková, A. and Bugánová, K., (2021). Differences in business risk effects on the future of SMEs due to Covid-19 pandemic. International Journal of Entrepreneurial Knowledge, 9(2), 14-31.
  • 20.Elhorst, J. P., (2014). Spatial Panel Data Models. Spatial Econometrics. SpringerBriefs in Regional Science. Springer, Berlin, Heidelberg.
  • 21.Fernández, F., Hernández, P., (2006). The Economic Effects of Exogenous Fiscal Shocks in Spain. European Central Bank. Working Paper No. 647.
  • 22.Fleissig, A., Strauss, J., (2001). Panel unit‐root tests of OECD stochastic convergence. Review of International Economics, 9(1), 153-162.
  • 23.Galinski, P., (2015). Determinants of debt limits in local governments: Case of Poland, Procedia, Social and Behavioral Sciences, 213, 376-382.
  • 24.Gargouri, I., Ksantini, M., (2016). The Determinants of Public Debt. The Romanian Economic Journal. 18 (59), 111-124.
  • 25.Gavurová, B., Belás, J., Rowland, Z. and Kubák, M., (2021). The impact of agreement on government procurement use on the competition in Slovak healthcare sector. Administratie si Management Public, 36, 102-115.
  • 26.Gavurová, B., Ivanková, V., Rigelsky, M. and Přívarová, M., (2020). Relations Between Tourism Spending and Global Competitiveness - an Empirical Study in Developed OECD Countries. Journal of Tourism and Services, 21(11), 38-54.
  • 27.Goodpaster, A. M., Kennedy, M. A., (2011). Quantification and statistical significance analysis of group separation in NMR-based metabonomics studies. Chemometrics and Intelligent Laboratory Systems, 109(2), 162-170.
  • 28.Guichard, S., Kennedy, M., Wurzel, E. & André, Ch., (2007). What Promotes Fiscal Consolidation: OECD Country Experiences. OECD Economic Department. Working Papers No. 553.
  • 29.Haas, M., Mittik, S. and Paolella. M.S., (2004). Mixed normal conditional heteroskedasticity. Journal of Financial Econometrics, 2(2), 211-250.
  • 30.Hasanov, F., Cherif, R., (2012). Public Debt Dynamics: The Effects of Austerity, Inflation, and Growth Shocks. International Monetary Fund. Working Paper WP/12/230.
  • 31.Hašková, S., Volf, P. and Machová, V., (2019). Economic convergence of Czech regions in terms of GDP and unemployment rate in response to FDI flows: Do businesses and regions flourish? Journal of interdisciplinary research, 9(1), 326-329.
  • 32.Hernán R., B., Perote, J., (2020). Determinants of the Public Debt in the Eurozone and Its Sustainability Amid the Covid-19 Pandemic. Sustainability, 12(16), 6456.
  • 33.Hsiao, Ch., (2003). Analysis of panel data. Cambridge University Press. Cambridge, UK.
  • 34.Imbeau, L.M., Pe´try, F., (2004). Politics, Institutions, and Fiscal Policy: Deficits and Surpluses in Federated States. Lanham, MD: Lexington Books
  • 35.Ključnikov, A., Civelek, M., Čech, P. and Kloudová, J., (2019). Entrepreneurial orientation of SMEs’ executives in the comparative perspective for Czechia and Turkey. Oeconomia Copernicana, 10(4), 773-795.
  • 36.Ključnikov, A., Civelek, M., Fialova, V. and Folvarčná, A., (2021). Organizational, local, and global innovativeness of family-owned SMEs depending on firm-individual level characteris tics: evidence from the Czech Republic. Equilibrium. Quarterly Journal of Economics and Economic Policy, 16(1), 169-184.
  • 37.Ključnikov, A., Civelek, M., Krajčík, V. and Ondrejmišková, I., (2020b). Innovative Regional Development of the Structurally Disadvantaged Industrial Region by the Means of the Local Currency. Acta Montanistica Slovaca, 25(2), 224-235.
  • 38.Ključnikov, A., Civelek, M., Polách, J., Mikoláš, Z. and Banot, M., (2020a). How do security and benefits instill trustworthiness of a digital local currency? Oeconomia Copernicana, 11(3), 433-465.
  • 39.Ključnikov, A., Civelek, M., Vozňáková, I. and Krajčík, V., (2020c). Can discounts ex pand local and digital currency awareness of individuals depending on their characteristics? Oeconomia Copernicana, 11(2), 239-266.
  • 40.Kolková, A., Ključnikov, A., (2021). Demand forecasting: an alternative approach based on technical indicator Pbands. Oeconomia Copernicana, 12(4), 863-894.
  • 41.Lavigne, R., (2011). The political and institutional determinants of fiscal adjustment: Entering and exiting fiscal distress, European. Journal of Political Economy, 27(1), 17- 35.
  • 42.Lee, I., (2018). Is Social Expenditure Responsible for Recent Rise in Public Debt in OECD Countries? Applied Economics Letters, 25, 43-46.
  • 43.Liu, Z., Lyu, J., (2020). Public debt and economic growth: Threshold effect and its influence factors. Applied Economics Letters, 28, 208-212.
  • 44.Mencinger, J., Aristovnik, A. and Verbič, M., (2014). The Impact of Growing Public Debt on Economic Growth in the European Union. Amfiteatru Economics, 35, 403-414.
  • 45.Novák, V., Vokoun, M., Stellner, F. and Vochozka, M., (2016). Institutional analysis of the contemporary regional labour market in the Czech Republic. E+M Ekonomie a Management, 19(3), 4-15.
  • 46.Ochotnický, P, Jankech, P., (2020). Úspešné koncepty politiky redukcie verejných dlhov po kríze. Politická ekonomie, 68(2), 168-193.
  • 47.Pankaj, S., Varun, A. & Vishakha, B., (2011). Determinants of Public Debt for middle income and high income group countries using Panel Data regression. MPRA Paper No. 32079.
  • 48.Pirtea, M.G., Nicolescu, A.C. and Mota, P.R., (2013). An empirical study on public debt’s determinants: evidence from Romania. Transylvanian Review of Administrative Sciences, 38, 144-157.
  • 49.Reinhart, C. M., Reinhart, V. and Rogoff, K. S., (2015). Dealing with Debt. Journal of International Economics, 96, 43-55.
  • 50.Reinhart, C. M., Rogoff, K. S., (2009). The Aftermath of Financial Crises. National Bureau of Economic Research. Cambridge M.A. Working Paper No. 14656,
  • 51.Reinhart, C. M., Rogoff, K. S., (2010). Growth in a Time of Debt. National Bureau of Economic Research. Cambridge M.A. Working Paper No. 15639,
  • 52.Remolona, E., Scatinga, M. and Wu, E., (2018). The dynamic pricing of sovereign risk in emerging markets: Fundamentals and risk aversion. The Journal of Fixed Income, 17(4), 57-71.
  • 53.Rousek, P., Vochozka, M. and Psárská, M., (2019). Analysis of the consumption on the goods and services market in the cybernetic model of the 15 older EU member states, Journal of interdisciplinary research, 9(1), 252-254.
  • 54.Rybáček, V., (2018). The Size of Government in Empirical Research: A Case Study from the Czech Republic. Littera Scripta, 11(2), 141-154.
  • 55.Sinha, P, Arora, V. & Bansal, V., (2011). Determinants of Public Debt for middle income and high income group countries using Panel Data regression, Munich Personal Repec Archive (MPRA Paper, No. 32079).
  • 56.Swamy, V., (2015). Government Debt and its Macroeconomic Determinants. An Empirical Investigation, Munich Personal Repec Archive (MPRA Paper, No. 64106).
  • 57.Swaray, R.B., (2005). Primary Commodity Dependence and Debt Problem in Less Developed Countries, Applied Econometrics and International Development. 5(4), 1-12.
  • 58.Torres-Reyna, O., (2007). Panel data analysis. Fixed and Random Effects using Stata. (v. 4.2). Data & Statistical Services, Priceton University.
  • 59.Veiga, L.G., Veiga, F. J., (2014). Determinants of Portuguese local governments’ indebtedness. NIPE Working Paper, 16/2014.
  • 60.Vrbka, J., (2016). Predicting Future GDP Development by Means of Artificial Intelligence. Littera Scripta, 9(3), 154-167.
  • 61.Wang, W., Zhang, X. and Paap, R., (2019). To pool or not to pool: What is a good strategy for parameter estimation and forecasting in panel regressions? In Journal of Applied Econometrics. 34(5), 724-745.
  • 62.Yaffee, R., (2003). A primer for panel data analysis. Social Sciences, Statistics and Mapping, New York University. 1-11.
  • 63.Žufan, J., Civelek, M., Hamarneh, I. and Kmeco, Ľ., (2020). The Impacts of Firm Characteristics on Social Media Usage of SMEs: Evidence from the Czech Republic. International Journal of Entrepreneurial Knowledge, 8(1), 102-113.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-17c4c935-6ead-4ab6-91ee-b6b5a9237d3d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.