PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Two modifications of the inertial Tseng extragradient method with self-adaptive step size for solving monotone variational inequality problems

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, we introduce two new inertial-type algorithms for solving variational inequality problems (VIPs) with monotone and Lipschitz continuous mappings in real Hilbert spaces. The first algorithm requires the computation of only one projection onto the feasible set per iteration while the second algorithm needs the computation of only one projection onto a half-space, and prior knowledge o fthe Lipschitz constant of the monotone mapping is not required in proving the strong convergence theorems for the two algorithms. Under some mild assumptions, we prove strong convergence results for the proposed algorithms to a solution of a VIP. Finally, we provide some numerical experiments to illustrate the efficiency and advantages of the proposed algorithms.
Wydawca
Rocznik
Strony
208--224
Opis fizyczny
Bibliogr. 45 poz., rys.
Twórcy
  • School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa
  • School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa
  • School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa
Bibliografia
  • [1] F. Facchinei and J. S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, Springer Series in Operations Research and Financial Engineering, Springer-Verlag, New York, 2003.
  • [2] L. O. Jolaoso, K. O. Oyewole, C. C. Okeke, and O. T. Mewomo, A unified algorithm for solving split generalized mixed equilibrium problem and fixed point of nonspreading mapping in Hilbert space, Demonstr. Math. 51(2018), 211-232.
  • [3] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, Academic Press, New York, 1980.
  • [4] I. V. Konnov, Combined Relaxation Methods for Variational Inequalities, Springer, Berlin, 2001.
  • [5] O. T. Mewomo and F. U. Ogbuisi, Convergence analysis of an iterative method for solving multiple-set split feasibility problems in certain Banach spaces, Quest. Math. 41(2018), no. 1, 129-148.
  • [6] F. U. Ogbuisi and O. T. Mewomo, Convergence analysis of common solution of certain nonlinear problems, Fixed Point Theory 19(2018), no. 1, 335-358.
  • [7] F. U. Ogbuisi and O. T. Mewomo, Iterative solution of split variational inclusion problem in real Banach space, Afr. Mat. 28(2017), no. 1-2, 295-309.
  • [8] L. O. Jolaoso, A. Taiwo, T. O. Alakoya, and O. T. Mewomo, Strong convergence theorem for solving pseudo-monotone variational inequality problem using projection method in a reflexive Banach space, J. Optim. Theory Appl. 185(2020), no. 3, 744-766, DOI: 10.1007/s10957-020-01672-3.
  • [9] Y. Censor, A. Gibali, and S. Reich, The subgradient extragradient method for solving variational inequalities in Hilbert space, J. Optim. Theory Appl. 148(2011), 318-335.
  • [10] Y. Censor, A. Gibali, and S. Reich, Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space, Optim. Methods Softw. 26(2011), 827-845.
  • [11] Y. Censor, A. Gibali, and S. Reich, Algorithms for the split variational inequality problem, Numer. Algorithms 59(2012), 301-323.
  • [12] P. Cholamjiak and S. Suantai,Iterative methods for solving equilibrium problems, variational inequalities and fixed points of nonexpansive semigroups, J. Glob. Optim. 57(2013), 1277-1297.
  • [13] C. Izuchukwu, G. C. Ugwunnadi, O. T. Mewomo, A. R. Khan, and M. Abbas, Proximal-type algorithms for split minimization problem in p-uniformly convex metric space, Numer. Algorithms 82(2019), no. 3, 909-935.
  • [14] L. O. Jolaoso, T. O. Alakoya, A. Taiwo, and O. T. Mewomo, A parallel combination extragradient method with Armijo line searching for finding common solution of finite families of equilibrium and fixed point problems, Rend. Circ. Mat. PalermoII (2019), DOI: 10.1007/s12215-019-00431-2.
  • [15] L. O. Jolaoso, T. O. Alakoya, A. Taiwo, and O. T. Mewomo, Inertial extragradient method via viscosity approximation approach for solving Equilibrium problem in Hilbert space, Optimization (2020), DOI: 10.1080/02331934.2020.1716752.
  • [16] L. O. Jolaoso, F. U. Ogbuisi, and O. T. Mewomo, An iterative method for solving minimization, variational inequality and fixed point problems in reflexive Banach spaces, Adv. Pure Appl. Math. 9(2018), no. 3, 167-184.
  • [17] L. O. Jolaoso, A. Taiwo, T. O. Alakoya, and O. T. Mewomo, A self-adaptive inertial subgradient extragradient algorithm for variational inequality and common fixed point of multivalued mappings in Hilbert spaces, Demonstr. Math. 52(2019), 183-203.
  • [18] G. Kassay, S. Reich, and S. Sabach, Iterative methods for solving systems of variational inequalities in reflexive Banach spaces, SIAM J. Optim. 21(2011), 1319-1344.
  • [19] S. A. Khan and W. Cholamjiak, Mixed variational inequalities with various error bounds for random fuzzy mappings, J. Intelligent & Fuzzy Systems 34(2018), no. 4, 2313-2324.
  • [20] C. C. Okeke and O. T. Mewomo, On split equilibrium problem, variational inequality problem and fixed point problem for multi-valued mappings, Ann. Acad. Rom. Sci. Ser. Math. Appl. 9(2017), no. 2, 255-280.
  • [21] Y. Shehu and O. T. Mewomo, Further investigation into split common fixed point problem for demicontractive operators, Acta Math. Sin.(Engl. Ser.) 32(2016), no. 11, 1357-1376.
  • [22] Y. Shehu and P. Cholamjiak, Iterative method with inertial for variational inequalities in Hilbert spaces, Calcolo (2019), DOI: 10.1007/s10092-018-0300-5.
  • [23] S. Suantai, N. Pholasa, and P. Cholamjiak, The modified inertial relaxed CQ algorithm for solving the split feasibility problems, J. Indust. Manag. Optim. 14(2018), 1595-1615.
  • [24] A. Taiwo, L. O. Jolaoso, and O. T. Mewomo, A modified Halpern algorithm for approximating a common solution of splite quality convex minimization problem and fixed point problem in uniformly convex Banach spaces, Comput. Appl. Math. 38(2019), no. 2, 77, DOI: 10.1007/s40314-019-0841-5.
  • [25] A. Taiwo, L. O. Jolaoso, and O. T. Mewomo, Parallel hybrid algorithm for solving pseudomonotone equilibrium and split common fixed point problems, Bull. Malays. Math. Sci. Soc. 43(2020), 1893-1918.
  • [26] J. Yang and H. Liu, A modified projected gradient method for monotone variational inequalities, J. Optim. Theory Appl. 179(2018), 197-211.
  • [27] A. Taiwo, T. O. Alakoya, and O. T. Mewomo, Halpern-type iterative process for solving split common fixed point and monotone variational inclusion problem between Banach spaces, Numer. Algorithms (2020), DOI: 10.1007/s11075-020-00937-2.
  • [28] G. M. Korpelevich, The extragradient method for finding saddle points and other problems, Ekon. Mat. Metody 12(1976), 747-756.
  • [29] Y. Censor, A. Gibali, and S. Reich, Extensions of Korpelevich’s extragradient method for the variational inequality problem in Euclidean space, Optimization 61(2012), 1119-1132.
  • [30] N. Nadezhkina and W. Takahashi, Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl. 128(2006), 191-201.
  • [31] M. V. Solodov and B. F. Svaiter, A new projection method for variational inequality problems, SIAM J. Control Optim. 37(1993), 765-776.
  • [32] P. Tseng, A modified forward-backward splitting method for maximal monotone mappings, SIAM J. Control Optim. 38(2020), 431-446.
  • [33] P. E. Maingé, A hybrid extragradient-viscosity method for monotone operators and fixed point problems, SIAM J. Control Optim. 47(2008), 1499-1515.
  • [34] J. Yang and H. Liu, Strong convergence result for solving monotone variational inequalities in Hilbert space, Numer. Algorithms 80(2019), no. 3, 741-752.
  • [35] D. V. Thong, N. T. Vinh, and Y. J. Cho, A strong convergence theorem for Tseng’s extragradient method for solving variational inequality problems, Optim. Lett. (2019), DOI: 10.1007/s11590-019-01391-3.
  • [36] F. Alvarez and H. Attouch, An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping, Set-Valued Anal. 9(2001), 3-11.
  • [37] W. Cholamjiak, P. Cholamjiak, and S. Suantai, An inertial forward-backward splitting method for solving inclusion problems in Hilbert spaces, J. Fixed Point Theory Appl. 20(2018), 42, DOI: 10.1007/s11784-018-0526-5.
  • [38] W. Cholamjiak, N. Pholasa, and S. Suantai, A modified inertial shrinking projection method for solving inclusion problemsand quasi-nonexpansive multivalued mappings, Comput. Appl. Math. 37(2018), no. 4, 5750-5774.
  • [39] B. T. Polyak, Some methods of speeding up the convergence of iterative methods, Zh. Vychisl. Mat. Mat. Fiz. 4(1964), 1-17.
  • [40] L. O. Jolaoso, A. Taiwo, T. O. Alakoya, and O. T. Mewomo, A unified algorithm for solving variational inequality and fixed point problems with application to the split equality problem, Comput. Appl. Math. 39(2020), 38, DOI: 10.1007/s40314-019-1014-2.
  • [41] O. K. Oyewole, H. A. Abass, and O. T. Mewomo, A strong convergence algorithm for a fixed point constrained split null point problem, Rend. Circ. Mat. Palermo II (2020), DOI: 10.1007/s12215-020-00505-6.
  • [42] K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Marcel Dekker, New York, 1984.
  • [43] T. O. Alakoya, L. O. Jolaoso, and O. T. Mewomo, Modified inertial subgradient extragradient method with self adaptive stepsize for solving monotone variational inequality and fixed point problems, Optimization (2020), DOI: 10.1080/02331934.2020.1723586.
  • [44] L. J. Lin, M. F. Yang, Q. H. Ansari, and G. Kassay, Existence results for Stampacchia and Minty type implicit variational inequalities with multivalued maps, Nonlinear Anal. 61(2005), 1-19.
  • [45] M. Kojima and S. Shindo, Extension of Newton and quasi-Newton methods to systems of PC1 equations, J. Oper. Res. Soc. Japan 29(1986), no. 4, 352-375.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-17c47b04-4ec8-40f2-83f3-d59f5e51a5cc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.