PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Point-of-Care Testing : Biosensor for Norepinephrine Determination

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An useful electrochemical sensing approach was developed for norepinephrine (NE) detection based on semiconducting polymer (9-nonyl-2,7-di(selenophen-2-yl)- 9H-carbazole) and laccase modified platinum electrode (Pt). The miniature Pt biosensor was designed and constructed via the immobilization of laccase in an electroactive layer of the electrode coated with thin polymeric film. This sensing arrangement utilized the catalytic oxidation of NE to norepinephrine quinone. The detection process was based on the oxidation of catecholamine in the presence of enzyme – laccase. With the optimized conditions, the analytical performance demonstrated selectivity in a wide linear range (0.1–200x10-6 M) with a detection limit of 240 nM and a quantification limit of 365 nM. Moreover, the method was successfully applied for selective NE determination in the presence of interfering substances.
Twórcy
  • Wroclaw University of Science and Technology, Faculty of Chemistry
  • Wroclaw University of Science and Technology, Faculty of Chemistry
autor
  • Wroclaw University of Science and Technology, Faculty of Chemistry
  • Wroclaw University of Science and Technology, Department of Microsystems
Bibliografia
  • [1] H. Gunduz-Bruce, “The acute effects of NMDA antagonism: from the rodent to the human brain”, Brain Research Reviews, vol. 60, May 2009, pp. 279– 286
  • [2] S. J. G. Lewis, R. A. Barker, “Understanding the dopaminergic deficits in Parkinson’s disease: Insightsinto disease heterogeneity”, Journal of Clinical Neuroscience, vol. 16, Aug. 2009, pp. 620–625
  • [3] E. R. Peskind, R. Elrod, D. J. Dobie, M. Pascualy, E. Petrie, C. Jensen, K. Brodkin, S. Murra, R. C. Veith, M. A. Raskind, “Cerebrospinal Fluid Epinephrine in Alzheimer's Disease and Normal Aging”, Neuropsychopharmacology, vol. 19, Dec. 1998, pp. 465–471
  • [4] E. Wierzbicka, M. Szultka-Młynska, B. Buszewski, G. D. Sulka, “Epinephrine sensing at nanostructured Au electrode and determination its oxidative metabolism”, Sensors and Actuators B, vol. 237, Dec. 2016, pp. 206–215
  • [5] P. Nagaraja, R.A. Vasantha, K.R. Sunitha, “A sensitive and selective spectrophotometric estimation of catechol derivatives in pharmaceutical preparations”, Talanta, vol. 55, Dec. 2001, pp. 1039-1046
  • [6] V. Carrera, E. Sabater, E. Vilanova, M.A. Sogorb, “A simple and rapid HPLC-MS method for the simultaneous determination of epinephrine, norepinephrine, dopamine and 5-hydroxytryptamine: application to the secretion of bovine chromaffin cell cultures”, Journal of Chromatography B, vol. 847, Mar. 2007, pp. 88-94
  • [7] K.E. Secor, T.E. Glass, “Selective amine recognition: development of a chemosensor for dopamine and norepinephrine”, Organic Letters, vol. 6, Oct. 2004, pp. 3727-3730
  • [8] N. W. Barnett, B.J. Hindson, S.W. Lewis, “Determination of 5-hydroxytryptamine (serotonin) and related indoles by flow injection analysis with acidic potassium permanganate chemiluminescence detection”, Analytica Chimica Acta, vol. 362, May 1998, pp. 131–139
  • [9] F. Artigas, M.J. Sarrias, E. Martinez, E. Gelpi, “Serotonin in body fluids: characterization of human plasmatic and cerebrospinal fluid pools by means of a new HPLC method”, Life Science, vol. 37, Aug. 1985, pp. 441- 447
  • [10] L.A. Kartsova, A.A. Sidorova, V.A. Kazakov, E.A. Bessonova, A.Y. Yashin, “Determination of Catecholamines by Capillary Electrophoresis and Reversed-Phase High-Performance Liquid Chromatography”, Journal of Analytical Chemistry, vol. 59, Aug. 2004, pp. 737-741
  • [11] K.J. Samdani, J.S. Samdani, N.H. Kim, J.H. Lee, “FeMoO4 based, enzyme-free electrochemical biosensor for ultrasensitive detection of norepinephrine” Biosensors and Bioelectronics, vol. 81, Jul. 2016, pp. 445-453
  • [12] Y. Wang, S. Wang, L. Tao, Q. Min, J. Hiang, Q. Wang, J. Hie, Y. Yue, S. Wu, X. Li, H. Ding, “A disposable electrochemical sensor for simultaneous determination of norepinephrine and serotonin in rat cerebrospinal fluid based on MWNTs-ZnO/chitosan composites modified screen-printed electrode”, Biosensors and Bioelectronics, vol. 65, Mar. 2015, pp. 31-38
  • [13] L-P. Lu, S-Q. Wang, X-Q. Lin, “Fabrication of layer-by-layer deposited multilayer films containing DNA and gold nanoparticle for norepinephrine biosensor”, Analytica Chimica Acta, vol. 519, Aug. 2004, pp. 161-166
  • [14] D.K. Drain, E.P. Hyle, F. Naubary, K.A. Freedberg, D. Wilson, W.R. Bishai, “Evaluating Diagnostic Point-of-Care Tests in Resource-Limited Settings”, Lancet Infectious Diseases, vol. 14, Mar. 2014, pp. 239–249
  • [15] R.W. Peeling, K.K. Holmes, D. Mabey, “Rapid tests for sexually transmitted infections (STIs): the way forward”, Sexually Transmmited Infection, vol. 82, Dec. 2006, pp. v1–v6
  • [16] A. St John, C.P. Price, “Existing and emerging technologies for point-of-care testing”, The Clinical Biochemist Reviews, vol. 35, Aug. 2014, pp. 155–167
  • [17] J.W. Schultze, H. Karabulut, “Application potential of conducting polymers”, Electrochimica Acta, vol. 50, Feb. 2004, pp. 1739-1745
  • [18] P. De Taxi du Poet, S. Miyamoto, T. Murakami, J. Kiura, I.. Karube, “Direct electron transfer with glucose oxidase immobilized in an electropolymerized poly(N-methylpyrrole) film on a gold electrode”, Analytica Chimica Acta, vol. 235, Aug. 1990, pp. 255 – 264
  • [19] D.W. Kolpin, E.T. Furlong, M.T. Meyer, E.M. Thurman, S.D. Zaugg, L.B. Barber, H.T. Buxton, “Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999-2000: a national reconnaissance”, Environmental Science and Technology, vol. 36, Mar. 2002, pp. 1202-1211
  • [20] A. Stafiej, K. Pyrzynska, F. Regan, “Determination of anti‐inflammatory drugs and estrogens in water by HPLC with UV detection”, Journal of Separation Science, vol. 30, Apr. 2007, pp. 985-991
  • [21] P. Pander, R. Motyka, P. Zassowski, M. Lapkowski, A. Swist, P. Data, “Electrochromic Properties of Novel Selenophene and Tellurophene Derivatives Based on Carbazole and Triphenylamine Core”, The Journal of Physical Chemistry C, vol. 121, May 2017, pp. 11027−11036
  • [22] F. Rusmini, Z. Zhong, J. Feijen, “Protein immobilization strategies for protein biochips”, Biomacromolecules, vol. 8, Jun. 2007, pp. 1775–1789
  • [23] I.W. Berezin, N.L. Kliaczko, A.W. Lewaszow, K. Martinek, W.W. Możajew, I. Chmielnicki, „Immobilizowane enzymy”, Biotechnologia T. 7, Uniwersytet im. Adama Mickiewicza, Poznań, 1992
  • [24] A. Sassolas, L.J. Blum, B.D. Leca-Bouvier, “Immobilization strategies to develop enzymatic biosensors”, Biotechnology Advances, vol. 30, May- Jun. 2012, pp. 489–511
  • [25] J. Cabaj, J. Sołoducho, A. Jędrychowska, D. Zając, “Biosensing invertase-based Langmuir–Schaefer films: Preparation and characteristic”, Sensors and Actuators B, vol. 166–167, May 2012, pp. 75–82
  • [26] T.C. Gokoglan, S. Soylemez, M. Kesik, S. Toksabay, L. Toppare, “Selenium containing conducting polymer based pyranose oxidase biosensor for glucose detection”, Food Chemistry, vol. 172, Apr. 2015, pp. 219-224
  • [27] T. Catal, H. Liu, H. Bermek, “Selenium Induces Manganese-dependent Peroxidase Production by the White-Rot Fungus Bjerkandera adusta (Willdenow) P. Karsten”, Biological Trace Element Research, vol. 123, Jun. 2008, pp. 211–217
  • [28] E. Desimoni, B. Brunetti, “Presenting Analytical Performancesof Electrochemical Sensors. Some Suggestions”, Electroanalysis, vol. 25, Jun. 2013, pp. 1645-1651
  • [29] J. Wei, J. He, C. Chen, X. Wang, “A catechin-modified carbon paste electrode forelectrocatalytic determination ofneurotransmitters”, Analytical Methods, vol. 7, May 2015, pp. 5641-5648
  • [30] S. Liu, F. Shi, X. Zhao, L. Chen, X. Su, “3-Aminophenyl boronic acid-functionalized CuInS2 quantum dots as a near-infrared fluorescence probe for the determination of dopamine” Biosensors and Bioelectronics, vol. 47, Sep. 2013, pp. 379–384
  • [31] S. Weng, D. Liang, H. Qiu, Z. Liu, Z. Lin, Z. Zheng, A. Liu, W. Chen, X. Lin, “A unique turn-off fluorescent strategy for sensing dopamine based on formed polydopamine (pDA) using graphene quantum dots (GQDs) as fluorescent probe”, Sensors and Actuators B, vol. 221, Dec. 2015, pp. 7– 14
  • [32] A. Mohammadi, A. Bayandori Moghaddam, S. Hosseini, M. Kazemzade, R. Dinarvandf, “A norepinephrine biosensor based on a glassy carbon electrode modified withcarbon nanotubes”, Analytical Methods, vol. 3, Aug. 2011, pp. 2406-2411
  • [33] J.T. Moraes, C.A. Salamanca-Neto, L. Švorc, J.G. Schirmann, A. M Barbosa-Dekker, R. Dekker, E. R Sartori, “Laccase from Botryosphaeria rhodina MAMB-05 as a biological component in electrochemical biosensing devices”, Analytical Methods, vol. 11, Feb. 2019, pp. 717–720
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-17c235df-2c56-4ad1-8163-ca6b83d1dce6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.