PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The usage of Trefftz functions and Picard's iteration for solving different problems of a two-dimensional wave equation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a method of solving two-dimensional wave equations which describe vibrations of the membrane with variable thickness and with damping. The differential operator is decomposed into two parts. The first one describes vibrations of the membrane with constant thickness without damping. The second contains the rest of the original operator and is treated as inhomogeneity for the first one. Picard’s iterations are used to calculate a successive approximation of the exact solution. Trefftz functions (wave polynomials) are used to solve the problem in each iteration. The presented examples show the usefulness of the method. The approach described in this paper can be used also for solving nonlinear problems for a wave equation.
Rocznik
Strony
129--140
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
  • Faculty of Mechatronics and Machine Design, Kielce University of Technology Kielce, Poland
autor
  • Faculty of Management and Computer Modelling, Kielce University of Technology Kielce, Poland
  • Faculty of Mechatronics and Machine Design, Kielce University of Technology Kielce, Poland
Bibliografia
  • [1] Trefftz E., Ein Gegenstueck zum Ritz'schen Verfahren, Proceedings of 2nd International Congress of Applied Mechanics, Zurich 1926, 131-137.
  • [2] Herrera I., Sabina F., Connectivity as an alternative to boundary integral equations: Construction of bases, Appl. Math. Phys. Sc. 1978, 75/5, 2059-2063.
  • [3] Jirousek J., Basis for development of large finite elements locally satisfying all fields equations, Comp. Meth. Appl. Mech. Eng. 1978, 65-92.
  • [4] Jirousek J., Zieliński A.P., Rabemantantsoa H., Venkatesh A., Survey of Trefftz-type element formulations, Computers and Structures 1997, 63/2, 225-242.
  • [5] Kupradze V.D., Three-dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity, North-Holland Publ. Cmp., Amsterdam 1989.
  • [6] Zieliński A.P., Zienkiewicz O.C., Generalized finite element analysis with T-complete boundary solution functions, Int. J. Numer. Meth. Eng. 1985, 21, 509-528.
  • [7] Rosenbloom P.C., Widder D.V., Expansion in terms of heat polynomials and associated functions, Trans. Am. Math. Soc. 1956, 92, 220-266.
  • [8] Ciałkowski M.J., Solution of inverse heat conduction problem with use new type of finite element base functions, [in:] Proceedings of the International Symposium on Trends in Continuum Physics, eds. B.T. Maruszewski, W. Muschik, A. Radowicz, World Scientific Publishing, Singapore, New Jersey, London, Hong Kong 1999, 64-78.
  • [9] Ciałkowski M.J., Frąckowiak A., Grysa K., Solution of a stationary inverse heat conduction problems by means of Trefftz non-continuous method, Int. J. of Heat Mass Transfer 2007, 50, 2170-2181.
  • [10] Piasecka M., Maciejewska B., The study of boiling heat transfer in vertically and horizontally oriented rectangular minichannels and the solution to the inverse heat transfer problem with the use of the Beck method and Trefftz functions, Experimental Thermal and Fluid Science 2012, 38, 19-32.
  • [11] Piasecka M., Maciejewska B., Enhanced heating surface application in a minichannel flow and the use of the FEM and Trefftz functions for the solution of inverse heat transfer problem, Experimental Thermal and Fluid Science 2013, 44, 23-33.
  • [12] Maciag A., Wauer J., Solution of the two-dimensional wave equation by using wave polynomials, Journal of Engineering Mathematics 2005, 51/4, 339-350.
  • [13] Maciag A., Solution of the three-dimensional wave polynomials, Mathematical Problems in Engineering 2005, 5, 583-598.
  • [14] Maciag A., The usage of wave polynomials in solving direct and inverse problems for two-dimensional wave equation, Int. J. Numer. Meth. Biomed. Eng. 2011, 27/7, 1107-1125.
  • [15] Maciag A., Wauer J., Wave polynomials for solving different types of two-dimensional wave equations, Computer Assisted Mechanics and Engineering Sciences (CAMES) 2005, 12, 363-378.
  • [16] Ciałkowski M.J., Frąckowiak A., Heat Functions and Their Application for Solving Heat Transfer and Mechanical Problems, Poznań University of Technology Publishers, Poznań 2000 (in Polish).
  • [17] Qing-Hua Qin, The Trefftz Finite and Boundary Element Method, WITPress, Southampton, Boston 2000.
  • [18] Li Z-C., Qiu Lu T-T., Hu H-Y., Cheng H-D., The Trefftz and Collocation Methods, WIT Press, Southampton, Boston 2008.
  • [19] Kołodziej J.A., Zieliński A.P., Boundary Collocation Techniques and Their Application in Engineering, WIT Press, Southampton, Boston 2009.
  • [20] Grysa K., Trefftz Functions and Their Applications in Solving the Inverse Problems, Kielce University of Technology Publishers, Kielce 2010 (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-17b48e93-4eb2-4aab-86c8-c28e3c49959e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.