Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Linear parameter varying (LPV) models are being increasingly used as a bridge between linear and nonlinear models. From a mathematical point of view, a large class of nonlinear models can be rewritten in LPV or quasi-LPV forms easing their analysis. From a practical point of view, that kind of model can be used for introducing varying model parameters representing, for example, nonconstant characteristics of a component or an equipment degradation. This approach is frequently employed in several model-based system maintenance methods. The identifiability of these parameters is then a key issue for estimating their values based on which a decision can be made. However, the problem of identifiability of these models is still at a nascent stage. In this paper, we propose an approach to verify the identifiability of unknown parameters for LPV or quasi-LPV state-space models. It makes use of a parity-space like formulation to eliminate the states of the model. The resulting input-output-parameter equation is analyzed to verify the identifiability of the original model or a subset of unknown parameters. This approach provides a framework for both continuous-time and discrete-time models and is illustrated through various examples.
Rocznik
Tom
Strony
255--269
Opis fizyczny
Bibliogr. 44 poz.
Twórcy
autor
- CRAN, University of Lorraine/CNRS, 54000, Nancy, France
autor
- CRAN, University of Lorraine/CNRS, 54000, Nancy, France
autor
- CRAN, University of Lorraine/CNRS, 54000, Nancy, France
autor
- CRAN, University of Lorraine/CNRS, 54000, Nancy, France
Bibliografia
- [1] Abbas, H.S., Tóth, R., Petreczky, M., Meskin, N. and Mohammadpour, J. (2014). Embedding of nonlinear systems in a linear parameter-varying representation, IFAC Proceedings Volumes 47(3): 6907–6913.
- [2] Alkhoury, Z., Petreczky, M. and Mercère, G. (2017). Identifiability of affine linear parameter-varying models, Automatica 80: 62–74.
- [3] Anaya, J.Z. and Henrion, D. (2009). An improved Toeplitz algorithm for polynomial matrix null-space computation, Applied Mathematics and Computation 207(1): 256–272.
- [4] Anguelova, M. (2007). Observability and Identifiability of Nonlinear Systems with Applications in Biology, PhD thesis, Chalmers University of Technology, Gothenburg.
- [5] Anstett, F. (2006). Les systèmes dynamiques chaotiques pour le chiffrement: Synthèse et cryptanalyse, PhD thesis, Université Henri Poincaré-Nancy I, Nancy.
- [6] Anstett, F., Bloch, G., Millérioux, G. and Denis-Vidal, L. (2008). Identifiability of discrete-time nonlinear systems: The local state isomorphism approach, Automatica 44(11): 2884–2889.
- [7] Anstett, F., Millérioux, G. and Bloch, G. (2006). Chaotic cryptosystems: Cryptanalysis and identifiability, IEEE Transactions on Circuits and Systems I: Regular Papers 53(12): 2673–2680.
- [8] Audoly, S., Bellu, G., D’Angiò, L., Saccomani, M.P. and Cobelli, C. (2001). Global identifiability of nonlinear models of biological systems, IEEE Transactions on Biomedical Engineering 48(1): 55–65.
- [9] Balsa-Canto, E., Alonso, A.A. and Banga, J.R. (2010). An iterative identification procedure for dynamic modeling of biochemical networks, BMC Systems Biology 4: 11.
- [10] Beelen, H. and Donkers, T. (2017). Joint state and parameter estimation for discrete-time polytopic linear parameter-varying systems, IFAC-PapersOnLine 50(1): 9778–9783.
- [11] Bellman, R. and Aström, K. J. (1970). On structural identifiability, Mathematical Biosciences 7(3): 329–339.
- [12] Bellu, G., Saccomani, M.P., Audoly, S. and D’Angiò, L. (2007). Daisy: A new software tool to test global identifiability of biological and physiological systems, Computer Methods and Programs in Biomedicine 88(1): 52–61.
- [13] Buchberger, B. (2006). Bruno Buchberger’s PhD thesis 1965: An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal, Journal of Symbolic Computation 41(3–4): 475–511.
- [14] Chis, O.-T., Banga, J.R. and Balsa-Canto, E. (2011). Structural identifiability of systems biology models: A critical comparison of methods, PLOS ONE 6(11): e27755.
- [15] Chow, E. andWillsky, A. (1984). Analytical redundancy and the design of robust failure detection systems, IEEE Transactions on Automatic Control 29(7): 603–614.
- [16] Coll, C. and Sánchez, E. (2019). Parameter identification and estimation for stage-structured population models, International Journal of Applied Mathematics and Computer Science 29(2): 327–336, DOI:10.2478/amcs-2019-0024.
- [17] Dankers, A., Tóth, R., Heuberger, P. S., Bombois, X. and Van den Hof, P.M. (2011). Informative data and identifiability in LPV-ARX prediction-error identification, 50th IEEE Conference on Decision and Control and European Control Conference, CDC-ECC 2011, Orlando, USA, pp. 799–804.
- [18] Denis-Vidal, L. and Joly-Blanchard, G. (1996). Identifiability of some nonlinear kinetics, 3rd Workshop on Modelling of Chemical Reaction Systems, Heidelberg, Germany, pp. 1–8.
- [19] Denis-Vidal, L., Joly-Blanchard, G. and Noiret, C. (1999). Some results and applications about identifiability of non-linear systems, European Control Conference, ECC 1999, Karlsruhe, Germany, pp. 1232–1237.
- [20] Glover, K. and Willems, J. (1974). Parametrizations of linear dynamical systems: Canonical forms and identifiability, IEEE Transactions on Automatic Control 19(6): 640–646.
- [21] Joly-Blanchard, G. and Denis-Vidal, L. (1998). Some remarks about an identifiability result of nonlinear systems, Automatica 34(9): 1151–1152.
- [22] Joubert, D. (2020). Structural Identifiability of Large Systems Biology Models, PhD thesis, Wageningen University, Wageningen.
- [23] Khare, S.R., Pillai, H.K. and Belur, M.N. (2010). Algorithm to compute minimal nullspace basis of a polynomial matrix, 19th International Symposium on Mathematical Theory of Networks and Systems, MTNS 2010, Budapest, Hungary, pp. 219–224.
- [24] Kwiatkowski, A., Boll, M.-T. and Werner, H. (2006). Automated generation and assessment of affine LPV models, 45th IEEE Conference on Decision and Control, CDC 2006, San Diego, USA, pp. 6690–6695.
- [25] Lee, L.H. and Poolla, K. (1997). Identifiability issues for parameter-varying and multidimensional linear systems, ASME 1997 Design Engineering Technical Conferences, Sacramento, USA.
- [26] Ljung, L. and Glad, T. (1994). On global identifiability for arbitrary model parametrizations, Automatica 30(2): 265–276.
- [27] Nõmm, S. and Moog, C. (2004). Identifiability of discrete-time nonlinear systems, IFAC Proceedings Volumes 37(13): 333–338.
- [28] Němcová, J. (2010). Structural identifiability of polynomial and rational systems, Mathematical Biosciences 223(2): 83–96.
- [29] Nijmeijer, H. and Van der Schaft, A. (1990). Nonlinear Dynamical Control Systems, Springer, New York.
- [30] Ohtake, H., Tanaka, K. and Wang, H.O. (2003). Fuzzy modeling via sector nonlinearity concept, Integrated Computer-Aided Engineering 10(4): 333–341.
- [31] Ollivier, F. (1990). Le problème de l’identifiabilité structurelle globale: Approche théorique, méthodes effectives et bornes de complexité, PhD thesis, Ecole Polytechnique, Palaiseau.
- [32] Peeters, R.L. and Hanzon, B. (2005). Identifiability of homogeneous systems using the state isomorphism approach, Automatica 41(3): 513–529.
- [33] Petreczky, M. and Mercère, G. (2012). Affine LPV systems: Realization theory, input-output equations and relationship with linear switched systems, 51st Annual Conference on Decision and Control, CDC 2012, Maui, USA, pp. 4511–4516.
- [34] Pohjanpalo, H. (1978). System identifiability based on the power series expansion of the solution, Mathematical Biosciences 41(1–2): 21–33.
- [35] Saccomani, M.P. (2011). An effective automatic procedure for testing parameter identifiability of HIV/AIDS models, Bulletin of Mathematical Biology 73(8): 1734–1753.
- [36] Saccomani, M.P., Audoly, S., Bellu, G., Cobelli, C. (1997). Global identifiability of nonlinear model parameters, IFAC Proceedings Volumes 30(11): 233–238.
- [37] Srinivasarengan, K., Ragot, J., Maquin, D. and Aubrun, C. (2016). Takagi–Sugeno model based nonlinear parameter estimation in air handling units, 4th IFAC International Conference on Intelligent Control and Automation Sciences, ICONS 2016, Reims, France, pp. 188–193.
- [38] Tunali, E. T. and Tarn, T.-J. (1987). New results for identifiability of nonlinear systems, IEEE Transactions on Automatic Control 32(2): 146–154.
- [39] Vajda, S. and Rabitz, H. (1989). State isomorphism approach to global identifiability of nonlinear systems, IEEE Transactions on Automatic Control 34(2): 220–223.
- [40] Verdière, N., Denis-Vidal, L., Joly-Blanchard, G. and Domurado, D. (2005). Identifiability and estimation of pharmacokinetic parameters for the ligands of the macrophage mannose receptor, International Journal of Applied Mathematics and Computer Science 15(4): 517–526.
- [41] Villaverde, A.F. and Banga, J.R. (2017). Structural properties of dynamic systems biology models: Identifiability, reachability, and initial conditions, Processes 5(2): 29.
- [42] Villaverde, A.F., Barreiro, A. and Papachristodoulou, A. (2016). Structural identifiability of dynamic systems biology models, PLOS Computational Biology 12(10): e1005153.
- [43] Walter, E. and Lecourtier, Y. (1982). Global approaches to identifiability testing for linear and nonlinear state space models, Mathematics and Computers in Simulation 24(6): 472–482.
- [44] Xia, X. and Moog, C.H. (2003). Identifiability of nonlinear systems with application to HIV/AIDS models, IEEE Transactions on Automatic Control 48(2): 330–336.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-17b121b5-ccfa-406f-8321-48fb6ec845c1