PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Structure and surface energy of both fluorite halves after cleaving along selected crystallographic planes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The density functional theory, supported with a commercial software, was used to compute the geometry and surface energy of fluorite cleaved along the (111), (110) and (100) planes. In the case of cleaving a piece of fluorite along the (111) plane the two newly created surfaces are identical consisting of fluorite ions with the surface energy equal to 0.384 J/m2. Cleaving fluorite along the (110) plane also provides identical halves and, both contain one Ca ion next to two F ions, with the surface energy equal to 0.723 J/m2. When cleaving takes place along the (100) plane, it creates two corresponding halves with different surface structures. One half, having only surface Ca ions (100Ca) has the surface energy equal to 0.866 J/m2, while the surface energy of the second half, having only F surface ions (100F), is 0.458 J/m2. Different structures and energies of the corresponding fluorite surfaces, that is (100Ca) and (100F) planes, should have an impact on their chemical properties, including hydrophobicity expressed by contact angle. The calculations performed in the paper also showed that reorganization of fluorite surfaces after cleaving was insignificant for all of the investigated planes.
Rocznik
Strony
451--458
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • Wroclaw University of Technology, Faculty of Geoengineering, Mining and Geology, 50-370 Wroclaw, Wybrzeze Wyspianskiego 27
autor
  • Wroclaw University of Technology, Faculty of Geoengineering, Mining and Geology, 50-370 Wroclaw, Wybrzeze Wyspianskiego 27
  • Wroclaw University of Technology, Faculty of Geoengineering, Mining and Geology, 50-370 Wroclaw, Wybrzeze Wyspianskiego 27,
Bibliografia
  • ANTHONY J. W., BIDEAUX R. A., BLADH K.W., NICHOLS M.C. (EDS). "Fluorite". Handbook of Mineralogy (PDF). III (Halides, Hydroxides, Oxides). Chantilly, VA, US: Mineralogical Society of America. ISBN 0962209724. Retrieved September 25, 2015
  • BAKAKIN V.V., 1960. The relationship between the structure of minerals and their flotation properties. Journal of Structural Chemistry 1(2), 149-155.
  • BARSKIJ L.A., 1984. Principles of Minerallury, Izd. Nauka, Moscow (in Russian).
  • DOVESI R., SAUNDERS V.R., ROETTI C., ORLANDO R., ZICOVICH-WILSON C.M., PASCALE F., CIVALLERI B., DOLL K., HARRISON N.M., BUSH I.J., D’ARCO P., LLUNELL M., 2009. CRYSTAL09, (2009) CRYSTAL09 User's Manual. University of Torino, Torin.
  • DRZYMALA J. 1994a. Hydrophobicity and collectorless flotation of inorganic materials. Advances in Colloid and Interface Science 50, 143–185.
  • DRZYMALA J. 1994b. Characterization of materials by Hallimond tube flotation. Part 1: maximum size of entrained particles. International Journal of Mineral Processing 42, 139–152.
  • FULTON III, R.B., MILLER, M.M., 2006. Fluorspar. In: Industrial Minerals and Rocks, 7th ed., J.E., Kopel, N.C. Trivedi, J.M., Barker, S.T., Krukowski (eds), SME, Littleton, Colorado, USA.
  • GAO Z., SUN W., HU Y., LIU X., 2012, Anisotropic surface broken bond properties and wettability of calcite and fluorite crystals, Transactions of Nonferrous Metals Society of China 22, 1203−1208.
  • HOY A.R., BUNKER P.R., 1979. A precise solution of the rotation bending Schrödinger equation for a triatomic molecule with application to the water molecule. Journal of Molecular Spectroscopy 74(1), 1–8.
  • JANCZUK B., BRUQUE J.M., GONZALEZ-MARTIN M.L., MORENO DEL POZO J., 1993. Wettability and surface tension of fluorite. Colloids and Surfaces A: Physicochemical and Engineering Aspects 75, 163–168.
  • LEEUW N.H., PURTON J.A., PARKER S.C., WATSON G.W., KRESSE G., 2000. Density functional theory calculations of adsorption of water at calcium oxide and calcium fluoride surfaces. Surface Science 452, 9–19.
  • MALDONADO P., GODINHO J.R.A., EVINS L.Z., OPPENEER P.M., 2013. Ab Initio Prediction of surface stability of fluorite materials and experimental verification. The Journal of Physical Chemistry C 117, 6639-6650.
  • MINERALS.NET, 2015, http://www.minerals.net/mineral/fluorite.aspx.
  • MONKHORST H.J., PACK D.J., 1976. Special points for Brillouin-zone integrations. Physical Review B 13, 5188.
  • PALACHE, C. BERMAN, H., AND FRONDEL, C., 1951, The System of Mineralogy, Volume II, seventh edition: John Wiley & Sons, New York, 1124 p.
  • PAULING L., 1960. The Nature of the Chemical Bond, 3rd ed. Cornell University.
  • PEINTINGER M.F., OLIVEIRA D.V., BREDOW T., 2012. Consistent Gaussian Basis Sets of Triple-Zeta Valence with Polarization Quality for Solid-State Calculations. Journal of Computational Chemistry 34(6), 451–459.
  • PERDEW J.P., BURKE K., ERNZERHOF M., 1996. Generalized Gradient Approximation Made Simple. Physical Review Letters 77 (18), 3865–3868.
  • REICHLING M., WILSON R. M., BENNEWITZ R., WILLIAMS R. T., GOGOLL S., STENZEL E., MATTHIAS E., 1996. Surface colloid evolution during low-energy electron irradiation of CaF2 (111). Surface Science 366(3), 531–544.
  • SCHICK M., DABRINGHAUS H., WANDELT, K., 2004. Macrosteps on CaF2 (111). Journal of Physics: Condensed Matter 16(6), L33–L37.
  • SCHREYER M., GUO L., THIRUNAHARI S., GAO F., GARLAND M., 2014. Simultaneous determination of several crystal structures from powder mixtures: the combination of powder X-ray diffraction, band-target entropy minimization and Rietveld methods. Journal of Applied Crystallography 47, 659–667.
  • SHANNON R.D., PREWITT C.T., 1969. Effective ionic radii in oxides and fluorides. Acta Crystallographica B25, 925–946.
  • STRUNZ H., 1970. Mineralogische Tebellen, Leipzig, 5th edition, Akad Verlagsges, Leipzig.
  • TASKER P. W., 1979. The stability of ionic crystal surfaces, Journal of Physics C: Solid State Physics 12, 4977–4983.
  • VELDE G.T, BICKELHAUPT F.M., BAERENDS E.J., GUERRA C.F., VAN GISBERGEN S.J.A., SNIJDERS J. G., ZIEGLER T., 2000. Chemistry with ADF, Journal of Computational Chemistry 22(9), 931–967 .
  • VITOV O., KONSTANTITOV L., 2001. Method for determining the cleavability of fluorite. Comptes rendus de l'Académie bulgare des Science, 54(3), 55–458.
  • WU L., FORSLING W., 1995. Surface complexation of calcium minerals in aqueous solution. III. Ion exchange and acid-base properties of hydrous fluorite surfaces. Journal of Colloid and Interface Science 174(1), 178–184.
  • ZAWALA J., DRZYMALA J., MALYSA K., 2007. Natural hydrophobicity and flotation of fluorite. Physicochemical Problems of Mineral Processing 41, 5–11.
  • ZAWALA J., DRZYMALA J., MALYSA K., 2008. An investigation into the mechanism of the three-phase contact formation at fluorite surface by colliding bubble. International Journal of Mineral Processing 88, 72–79.
  • ZHANG X., WANG X., MILLER J.D., 2014. Wetting of selected fluorite surfaces by water. Surface Innovations 3, 39–48.
  • ZHANG X., WANG X., YIN X., DU H., MILLER. J.D., 2012. Interfacial Chemistry features of selected fluorite surfaces. In: Separation Technologies for minerals, coal, and earth resources, C.A. Young and G.H. Luttrell (eds.). Soc. Mining, Metallurgy and Exploration, 627-634
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-17aeeb6e-c140-45ab-9832-0d94d3119580
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.