PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Construction of waveform library in cognitive radar

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Based on the thoughts of cognitive radar, Fractional Fourier Transform (FrFT) is used to generate a rotatable waveform libraries of Frank coded/Barker coded waveform in this paper. Then, the ambiguity function is used to analyze the delay resolution, Doppler resolution, delay side-lobe level, and Doppler side-lobe level of the waveform libraries and orthogonality of them is also analyzed. Furthermore, we proved theoretically that there is a fixed coordinate transformation between the waveforms of library and its origin waveform. Therefore, the Cramér-Rao low bound (CRLB) of motion parameters can be computed easily using the waveforms of the libraries, which facilitate the subsequent waveform scheduled work. Simulation results show that the library waveforms can reduce delay resolution to satisfy the different situations and can bring significant benefits for delay resolution, orthogonality and reuse interval.
Rocznik
Tom
S 2
Strony
22--29
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
  • Beijing Institute of Tracking and Telecommunications Technology, Beijing, China
autor
  • Communication Engineering Xiamen University Xiamen Fujian 361005 China
autor
  • Communication Engineering, Xiamen University, Xiamen, Fujian, China
Bibliografia
  • 1. C.H. Chen, Q. Zhang, Y. Luo.: A waveform optimization designing method for cognitive radar with steppedfrequency signal. Acta Aeronautica et Astronautica Sinica, No 7, Vol 37, 2016, p. 2276-2285
  • 2. S. Haykin.: Cognitive radar: a way of the future. IEEE Signal Processing Magazine., No 1, Vol 23, 2006, p. 30-40
  • 3. J. Shang, D. Zhao, Y. Wei.: Pareto-Optimal Sparse Frequency Radar Waveform Design. Systems Engineering and Electronics, No 7, Vol 38, 2016, p. 1538-1542
  • 4. D. Cochran, S. Suvorova, SD. Howard, B. Moran.: Waveform Libraries. IEEE Signal Processing Magazine, No 1, Vol 26, 2009, p. 12-21
  • 5. X. Li, M.M. Fan.: Research Advance on Cognitive Radar and Its Key Technology. ACTA ELECTRONICA SINICA, No 9, Vol 40, 2012, p. 1863-1870
  • 6. H.E. Xia.: Adaptive Waveform Selection Techniques for Target Tracking. ChangSha, 2010.
  • 7. D.B. Yu, Y.H. Wu, W.G. Zhu: Research on Selection Methods of Target Tracking Waveforms Based on a Waveform Library. RADAR & ECM, No 2, Vol 33, 2013, p.35-42
  • 8. A.A.A. Solyman, S. Weiss, J.J. Soraghan.: Low-Complexity LSMR Equalisation of FrFT-Based Multicarrier Systems in Doubly Dispersive Channels. IEEE International Symposium on Signal Processing and Information Technology, ISSPIT 2011, p. 461-465, 2011
  • 9. B. Jin.: Research on Target Tracking Methods in Cognitive Radar [D]. Xian, Xian Electronics Science and Technology University, 2014.
  • 10. C.V. Ilioudis, C. Clemente, I. Proudler, J.J. Soraghan.: Performance Analysis of Fractional Waveform Libraries in MIMO Radar Scenario. IEEE National Radar Conference - Proceedings, v 2015-June, June, p. 1119-1124
  • 11. C.V. Ilioudis, C. Clemente, I. Proudler, J.J. Soraghan.: Radar Waveform Libraries Using Fractional Fourier Transform. in 2014 IEEE Radar Conference, Cincinnati, Ohio, 19-23 May 2014.
  • 12. F. Zhang, R. Tao, Y. Wang.: Angle Resolution of Fractional Fourier Transform. 2014 31th URSI General Assembly and Scientific Symposium, URSI GASS 2014, October 17, 2014
  • 13. Zhang. Lili, Liu Sixin, Qu, Lete, et al.: Research on wavelet extraction of gpr signals based on multilevel fractional fourier transform filter [J]. Journal of the Balkan Tribological Assocaitaion, Vol. 22, No 1, 2016, p. 807–818
  • 14. H.M. Ozaktas, M.A. Kutay, D. Mendlovic.: Introduction to the Fractional Fourier Transform and its Applications. IEEE Signal Processing Magazine., No 9, Vol 44, 1996, p. 2141-2150.
  • 15. L.B. Almeida.: The fractional Fourier Transform and TimeFrequency Representations. IEEE Transactions on Signal Processing., No 11, Vol 42, 1994, p. 3084-3091
  • 16. H.L.V. Trees.: Detection, Estimation, and Modulation Theory, Part III. New York, 2001
  • 17. X.Y. Li, Y.L. Dong, L. Zhang, J. Guan.: A New Design Method of Low Sidelobe Level LFM Noise Radar Waveform. Journal of Electronics & Information Technology, No 6, Vol 38, 2016, p. 1452-1459
  • 18. C. Gao, K.C. The, A. Liu, H. Sun.: Piecewise LFM Waveform for MIMO Radar. IEEE Transactions on Aerospace and Electronic Systems., No 2, Vol 52, 2016, p. 590-602
  • 19. J. Yang, Z. Qiu, X. LI, Z. Zhuang.: Analysis and Processing of the Chaotic-Based Random Stepped Frequency Signal. Journal of National University of Defense Technology, No 6, Vol 34, 2012, p. 163-169
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-17aa77e6-33a2-40c0-bc1f-d228cd10ddab
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.