PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Using elastic wave velocity anomaly to predict rockburst hazard in coal mines

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
For the prevention and control of rockburst in underground coal mines, a detailed assessment of a rockburst hazard area is crucial. In this study, the dependence between stress and elastic wave velocity of axially-loaded coal and rock samples was tested in a laboratory. The results show that P-wave velocity in coal and rock is positively related to axial stress and can be expressed by a power function. The relationship showed that high stress and a potential rockburst area in coal mines can be determined by the elastic wave velocity anomaly assessment with passive seismic velocity tomography. The principle and implementation procedure of passive seismic velocity tomography for elastic wave velocity were introduced, and the assessment model of rockburst hazard using elastic wave velocity anomaly was built. A case study of a deep longwall panel affected by rockbursts was introduced to demonstrate the effectiveness of tomography. The rockburst prediction results by passive velocity tomography closely match the dynamic phenomenon in the field, which indicates the feasibility of elastic wave velocity anomaly for rockburst hazard prediction in coal mines.
Rocznik
Strony
141--164
Opis fizyczny
Bibliogr. 40 poz., fot., rys., tab., wykr.
Twórcy
autor
  • Anhui University of Science and Technology, School of Mining Engineering, Huainan 232001, China
  • Engineering Laboratory for Safe and Precise Coal Mining of Anhui Province, Huainan 232001, China
  • AGH University of Science and Technology, al. Mickiewicza Av. 30, 30-059 Krakow, Poland
autor
  • China University of Mining and Technology, School of Mines, Xuzhou 221116, China
autor
  • Anhui University of Science and Technology, School of Mining Engineering, Huainan 232001, China
  • China University of Mining and Technology, School of Mines, Xuzhou 221116, China
Bibliografia
  • [1] P.G. Ranjith, J. Zhao, M.H. Ju, R.V.S. De Silva, T.D. Rathnaweera, A.K.M.S. Bandara, Opportunities and challenges in deep mining: A brief review. Engineering 3 (4), 546-551 (2017). DOI: https://doi.org/10.1016/J.ENG.2017.04.024.
  • [2] P. Małkowski, Ł. Ostrowski, P. Bachanek, Modelling the small throw fault effect on the stability of a mining roadway and its verification by in situ investigation. Energies 10 (12), 2082 (2017). DOI: https://doi.org/10.3390/en10122082
  • [3] B.T. Shen, Y. Duan, X. Luo, M.D. Werken, B. Dlamini, L. Chen, O. Vardar, I. Canbulat, Monitoring and modelling stress state near major geological structures in an underground coal mine for coal burst assessment. Int. J. Rock. Mech. Min. 129, 104294 (2020). DOI: https://doi.org/10.1016/j.ijrmms.2020.104294.
  • [4] L.S. Jiang, P. Kong, P.P. Zhang, J.M. Shu, Q.B. Wang, L.J. Chen, Q.L. Wu, Dynamic analysis of the rock burst potential of a longwall panel intersecting with a fault. Rock. Mech. Rock. Eng. 53 (4), 1737-1754 (2020). DOI: https://doi.org/10.1007/s00603-019-02004-2.
  • [5] Y.S. Yang, S.J. Wei, D.M. Zhang, Influence of rock burst and other disasters on stability of surrounding rock of roadway. Geotech. Geol. Eng. 36, 1767-1777 (2018). DOI: https://doi.org/10.1007/s10706-017-0431-5.
  • [6] P. Małkowski, Z. Niedbalski, A comprehensive geomechanical method for the assessment of rockburst hazards in underground mining. Int. J. Min. Sci. Techno. 30 (3), 345-355 (2020). DOI: https://doi.org/10.1016/j.ijmst.2020.04.009.
  • [7] Q.X. Qi, Y.S. Pan, L.Y. Shu, H.Y. Li, D.Y. Jiang, S.K. Zhao, Y.H. Zou, J.F. Pan, K.J. Wang, HT. Li, Theory and technical framework of prevention and control with different sources in multi-scales for coal and rock dynamic disasters in deep mining of coal mines. J. China. Coal. Soc. 43 (7), 1801-1810 (2018). DOI: https://doi.org/10.13225/j.cnki.jccs.2018.0660.
  • [8] KY. Zhou, L.M. Dou, X.W. Li, S.K. Song, J.R. Cao, J.Z. Bai, X.T. Ma, Coal burst and mining-induced stress evolution in a deep isolated main entry area – A case study. Eng. Fail. Anal. 137, 106289 (2022). DOI: https://doi.org/10.1016/j.engfailanal.2022.106289.
  • [9] P. Konicek, P. Waclawik, Stress changes and seismicity monitoring of hard coal longwall mining in high rockburst risk areas. Tunn. Under. Sp. Tech. 81 (NOV.), 237-251 (2018). DOI: https://doi.org/10.1016/j.tust.2018.07.019.
  • [10] X.Q. He, W.X. Chen, B.S. Nie, H. Mitri, Electromagnetic emission theory and its application to dynamic phenomena in coal-rock. Int. J. Rock. Mech. Min. 48 (8), 1352-1358 (2011). DOI: https://doi.org/10.1016/j.ijrmms.2011.09.004.
  • [11] J. Li, J.H. Yue, Y. Yang, X.Z. Zhan, L. Zhao, Multi-resolution feature fusion model for coal rock burst hazard recognition based on acoustic emission data. Measurement 100, 329-336 (2017). DOI: https://doi.org/10.1016/j.measurement.2017.01.010.
  • [12] F.F. Tian, J.S. Lei, X.W. Xu, Teleseismic P-wave crustal tomography of the Weifang segment on the Tanlu fault zone: A case study based on short-period dense seismic array experiment. Phys. Earth. Planet. In. 2020, 106521 (2020). DOI: https://doi.org/10.1016/j.pepi.2020.106521.
  • [13] W.L. Li, R.Q. Wei, Q.H. Cui, G.H. Li, Y.Z. Zhou, P-wave velocity anomalies atop and in the mantle transition zone beneath the northern South China Sea from triplicated waveforms. J. Asian. Earth. Sci. 197, 104379 (2020). DOI: https://doi.org/10.1016/j.jseaes.2020.104379.
  • [14] R. Kounoudis, I.D. Bastow, C.S. Ogden, S. Goes, Seismic tomographic imaging of the eastern mediterranean mantle: implications for terminal‐stage subduction, the uplift of Anatolia, and the development of the North Anatolian Fault. Geochem. Geophy. Geosy. 21 (7) (2020). DOI: https://doi.org/10.1029/2020GC009009.
  • [15] S. Nakagawa, K.T. Nihei, L.R. Myer, Shear-induced conversion of seismic waves across single fractures. Int. J. Rock. Mech. Min. 37 (1-2), 203-218 (2000). DOI: https://doi.org/10.1016/s1365-1609(99)00101-x.
  • [16] Z.W. Wang, X.B. Li, D.P. Zhao, X.Y. Shang, L.J. Dong, Time-lapse seismic tomography of an underground mining zone. Int. J. Rock. Mech. Min. 107, 136-149 (2018). DOI: https://doi.org/10.1016/j.ijrmms.2018.04.038.
  • [17] KY. Zhou, L.M. Dou, S.Y. Gong, J.Z. Li, J.K. Zhang, J.R. Cao, Study of rock burst risk evolution in front of deep longwall panel based on passive seismic velocity tomography. Geofluids 2020 (1), 1-14 (2020). DOI: https://doi.org/10.1155/2020/8888413.
  • [18] K. Luxbacher, E. Westman, P. Swanson, M. Karfakis, Three-dimensional time-lapse velocity tomography of an underground longwall panel. Int. J. Rock. Mech. Min. 45 (4), 478-485 (2008). DOI: https://doi.org/10.1016/j.ijrmms.2007.07.015.
  • [19] H. He, L.M. Dou, X.W. Li, Q.Q. Qiao, T.J. Chen, S.Y. Gong, Active velocity tomography for assessing rock burst risks in a kilometer deep mine. Min. Sci. Techno. 21 (5), 673-676 (2011). DOI: https://doi.org/10.1016/j.mstc.2011.10.003.
  • [20] N. Hosseini, K. Oraee, K. Shahriar, K. Goshtasbi, Passive seismic velocity tomography on longwall mining panel based on simultaneous iterative reconstructive technique (SIRT). J. Cent. South. Univ. 019 (008), 2297-2306 (2012). DOI: https://doi.org/10.1007/s11771-012-1275-z.
  • [21] J. Vatcher, S.D. Mckinnon, J. Sjberg, Rock mass characteristics and tomographic data. Rock. Mech. Rock. Eng. 51 (5), 1615-1619 (2018). DOI: https://doi.org/10.1007/s00603-018-1428-y.
  • [22] X. Ma, E. Westman, D. Counter, F. Malek, B. Slaker, Passive seismic imaging of stress evolution with mininginduced seismicity at hard-rock deep mines. Rock. Mech. Rock. Eng. 53 (6), 2789-2804 (2020). DOI: https://doi.org/10.1007/s00603-020-02076-5.
  • [23] R. Ulusay, J.A. Hudson, The complete ISRM suggested methods for rock characterization, Testing and Monitoring. Ankara: ISRM Turkish National Group (2007).
  • [24] J. Quiñones, J. Arzúa, L.R. Alejano, F. García-Bastante, D. Mas Ivars, G. Walton, Analysis of size effects on the geomechanical parameters of intact granite samples under unconfined conditions. Acta. Geotech. 12, 1229-1242 (2017). DOI: https://doi.org/10.1007/s11440-017-0531-7.
  • [25] P. Małkowski, L. Ostrowski, J. Brodny, Analysis of Young’s modulus for Carboniferous sedimentary rocks and its relationship with uniaxial compressive strength using different methods of modulus determination. J. Sustain. Min. 17, 145-157 (2018). DOI: https://doi.org/10.1016/j.jsm.2018.07.002.
  • [26] Q.Q. Zhu, D.Y. Li, Z.Y. Han, X.B. Li, Z.L. Zhou, Mechanical properties and fracture evolution of sandstone specimens containing different inclusions under uniaxial compression. Int. J. Rock. Mech. Min. 115, 33-47 (2019). DOI: https://doi.org/10.1016/j.ijrmms.2019.01.010.
  • [27] R.M. Holt, A.K. Furre, P. Horsrud, Stress dependent wave velocities in sedimentary rock cores: why and why not?. Int. J. Rock. Mech. Min. 34, 128-44 (1997). DOI: https://doi.org/10.1016/S1365-1609(97)00059-2.
  • [28] F.L. Pellet, G. Fabre, Damage Evaluation with P-Wave Velocity measurements during uniaxial compression tests on argillaceous rocks. Int. J. Geomech.·7, 431-436 (2007). DOI: https://doi.org/10.1061/(ASCE)1532-3641(2007)7:6(431).
  • [29] W.H. He, Z.L. Chen, H.Z. Shi, C.G. Liu, S.W. Li, Prediction of acoustic wave velocities by incorporating effects of water saturation and effective pressure. Eng. Geol. 280, 105890 (2020). DOI: https://doi.org/10.1016/j.enggeo.2020.105890.
  • [30] M. Fathollahy, A. Uromeiehy, M.A. Riahi, Y. Zarei, P-Wave velocity calculation (PVC) in rock mass without geophysical-seismic field measurements. Rock. Mech. Rock. Eng. 54, 1223-1237 (2021). DOI: https://doi.org/10.1007/s00603-020-02326-6.
  • [31] J. Dubiński. Seismic method of anticipating assessment of rockburst hazard in hard coal mines. Research Works of Central Mining Institute, extra series, Katowice (in Polish) (1989).
  • [32] G.K. Ghosh, C. Sivakumar, Application of underground microseismic monitoring for ground failure and secure longwall coal mining operation: A case study in an Indian mine. J. Appl. Geophys. 150, 21-39 (2018). DOI: https://doi.org/10.1016/j.jappgeo.2018.01.004.
  • [33] A.Y. Cao, L.M. Dou, W. Cai, S.Y. Gong, S. Liu, G.C. Jing, Case study of seismic hazard assessment in underground coal mining using passive tomography. Int. J. Rock. Mech. Min. 78, 1-9 (2015). DOI: https://doi.org/10.1016/j.ijrmms.2015.05.001.
  • [34] H. Navid, Evaluation of the rockburst potential in longwall coal mining using passive seismic velocity tomography and image subtraction technique. J. Seismol. 21 (5), 1101-1110 (2017). DOI: https://doi.org/10.1007/s10950-017-9654-4.
  • [35] W. Cai, L.M. Dou, S.Y. Gong, Z.L. Li, S.S. Yuan, Quantitative analysis of seismic velocity tomography in rock burst hazard assessment. Nat. Hazards. 75 (3), 2453-2465 (2015). DOI: https://doi.org/10.1007/s11069-014-1443-6.
  • [36] S.Y. Gong, J. Li, F. Ju, L.M. Dou, J. He, X.Y. Tian, Passive seismic tomography for rockburst risk identification based on adaptive-grid method. Tunn. Under. Sp. Tech. 86 (APR.), 198-208 (2019). DOI: https://doi.org/10.1016/j.tust.2019.01.001.
  • [37] L.M. Dou, W. Cai, S.Y. Gong, R.J. Han, J. Liu, Dynamic risk assessment of rock burst based on the technology of seismic computed tomography detection. J. China. Coal. Soc. 39 (2), 238-244 (2014). DOI: https://doi.org/10.13225/j.cnki.jccs.2013.2016.
  • [38] G. Mutke, J. Dubiński, A. Lurka, New criteria to assess seismic and rock burst hazard in coal mines. Arch. Min. Sci. 60 (3), 743-760 (2015). DOI: https://doi.org/10.1515/amsc-2015-0049.
  • [39] X.H. Yang, T. Ren, L.H. Tan, A. Remennikov, Effects of water saturation time on energy dissipation and burst pro pensity of coal specimens. Geomech. Eng. 24 (3), 205-213 (2021). DOI: https://doi.org/10.12989/gae.2021.24.3.205.
  • [40] L.M. Dou, J. He, A.Y. Cao, S.Y. Gong, W. Cai, Rock burst prevention methods based on theory of dynamic and static combined load induced in coal mine. J. China. Coal. Soc. 40 (7), 1469-1476 (2015). DOI: https://doi.org/10.13225/j.cnki.jccs.2014.1815.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-17aa2007-3e87-4d56-97df-58a6a32b5013
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.