PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A new design of a 4-channel optical demultiplexer based on photonic crystal ring resonator using a modified Y-branch

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we propose a new structure to design a 4-channel optical demultiplexer using a modified Y-branch structure with 4 hexagonal photonic crystal ring resonators. A new optical filter with a high transfer coefficient and quality factor has been introduced and designed in the present paper using a hexagonal photonic crystal ring resonator, which has then been used to design a 4-channel optical demultiplexer. The proposed demultiplexer has an average transfer coefficient of 95.5% and a high quality factor of 4164.6. It also has a channel spacing of 2.75 nm and a spectral width of 0.4 nm. The maximum and minimum crosstalk values of the channels are –10.5 and –36.5 dB, respectively. To study the photonic band structure, the plane wave expansion method has been used and the finite-difference time-domain method has also been used to analyze the optical behavior of the structure.
Czasopismo
Rocznik
Strony
191--200
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
  • Faculty of Electrical Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran
autor
  • Faculty of Electrical Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran
Bibliografia
  • [1] MUKHERJEE B., WDM optical communication networks: progress and challenges, IEEE Journal on Selected Areas in Communications 18(10), 2000, pp. 1810–1824.
  • [2] ALIPOUR-BANAEI H., SERAJMOHAMMADI S., MEHDIZADEH F., Optical wavelength demultiplexer based on photonic crystal ring resonators, Photonic Network Communications 29(2), 2015, pp. 146–150.
  • [3] ALIPOUR-BANAEI H., MEHDIZADEH F., HASSANGHOLIZADEH-KASHTIBAN M., A novel proposal for all optical PhC-based demultiplexers suitable for DWDM applications, Optical and Quantum Electronics 45(10), 2013, pp. 1063–1075.
  • [4] SAJEEV JOHN, Strong localization of photons in certain disordered dielectric superlattices, Physical Review Letters 58(23), 1987, pp. 2486–2489.
  • [5] JOANNOPOULOS J.D., JOHNSON S.G., WINN J.N., MEADE R.D., Photonic Crystals: Molding the Flow of Light, Princeton University Press, 2011.
  • [6] KRAUSS T.F., DE LA RUE R.M., Photonic crystals in the optical regime—past, present and future, Progress in Quantum Electronics 23(2), 1999, pp. 51–96.
  • [7] SAKODA K., Optical Properties of Photonic Crystals, Springer Series in Optical Sciences, Vol. 80, Springer-Verlag Berlin Heidelberg, 2005.
  • [8] ALIPOUR-BANAEI H., MEHDIZADEH F., SERAJMOHAMMADI S., A novel 4-channel demultiplexer based on photonic crystal ring resonators, Optik – International Journal for Light and Electron Optics 124(23), 2013, pp. 5964–5967.
  • [9] MEHDIZADEH F., SOROOSH M., ALIPOUR-BANAEI H., An optical demultiplexer based on photonic crystal ring resonators, Optik – International Journal for Light and Electron Optics 127(20), 2016, pp. 8706–8709.
  • [10] TALEBZADEH R., SOROOSH M., DAGHOOGHI T., A 4-channel demultiplexer based on 2D photonic crystal using line defect resonant cavity, IETE Journal of Research 62(6), 2016, pp. 866–872.
  • [11] SERAJMOHAMMADI S., ALIPOUR-BANAEI H., MEHDIZADEH F., All optical decoder switch based on photonic crystal ring resonators, Optical and Quantum Electronics 47(5), 2015, pp. 1109–1115.
  • [12] ROBINSON SAVARIMUTHU, NAKKEERAN RANGASWAMY, Coupled mode theory analysis for circular photonic crystal ring resonator-based add-drop filter, Optical Engineering 51(11), 2012, article ID 114001.
  • [13] BENDJELLOUL R., BOUCHEMAT T., BOUCHEMAT M., An optical channel drop filter based on 2D photonic crystal ring resonator, Journal of Electromagnetic Waves and Applications 30(18), 2016, pp. 2402–2410.
  • [14] DANAIE M., KAATUZIAN H., Design and simulation of an all-optical photonic crystal AND gate using nonlinear Kerr effect, Optical and Quantum Electronics 44(1–2), 2012, pp. 27–34.
  • [15] OLYAEE S., MOHEBZADEH-BAHABADY A., Designing a novel photonic crystal nano-ring resonator for biosensor application, Optical and Quantum Electronics 47(7), 2015, pp. 1881–1888.
  • [16] OLYAEE S., BAHABADY A.M., Design and optimization of diamond-shaped biosensor using photonic crystal nano-ring resonator, Optik – International Journal for Light and Electron Optics 126(20), 2015, pp. 2560–2564.
  • [17] ROSTAMI A., ALIPOUR BANAEI H., NAZARI F., BAHRAMI A., An ultra compact photonic crystal wavelength division demultiplexer using resonance cavities in a modified Y-branch structure, Optik – International Journal for Light and Electron Optics 122(16), 2011, pp. 1481–1485.
  • [18] GUPTA N.D., JANYANI V., Dense wavelength division demultiplexing using photonic crystal waveguides based on cavity resonance, Optik – International Journal for Light and Electron Optics 125(19), 2014, pp. 5833–5836.
  • [19] TALEBZADEH R., SOROOSH M., High quality complete coupling 4-channel demultiplexer based on photonic crystal ring resonators, Optoelectronics and Advanced Materials – Rapid Communications 9(1–2), 2015, pp. 5–9.
  • [20] MEHDIZADEH F., SOROOSH M., A new proposal for eight-channel optical demultiplexer based on photonic crystal resonant cavities, Photonic Network Communications 31(1), 2016, pp. 65–70.
  • [21] VENKATACHALAM K., SRIRAM KUMAR D., ROBINSON S., Investigation on 2D photonic crystal-based eight-channel wavelength-division demultiplexer, Photonic Network Communications 34(1), 2017, pp. 100–110.
  • [22] KANNAIYAN V., DHAMODHARAN S.K., SAVARIMUTHU R., Performance analysis of two-dimensional photonic crystal octagonal ring resonator based eight channel demultiplexer, Optica Applicata 47(1), 2017, pp. 7–18.
  • [23] TALEBZADEH R., SOROOSH M., KAVIAN Y.S., MEHDIZADEH F., Eight-channel all-optical demultiplexer based on photonic crystal resonant cavities, Optik – International Journal for Light and Electron Optics 140, 2017, pp. 331–337.
  • [24] JOHNSON S.G., JOANNOPOULOS J.D., Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis, Optics Express 8(3), 2001, pp. 173–190.
  • [25] GEDNEY S.D., Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics, Synthesis Lectures on Computational Electromagnetics, Morgan & Claypool, 2011.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-17a18871-355c-4c98-a760-bc2d50f5ca2b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.