PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Morphology Change Of Si Deposit In Molten Salt Electrorefining

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Zmiana morfologii osadu Si podczas elektrorafinacji w stopionych solach
Języki publikacji
EN
Abstrakty
EN
The effects of processing parameters on the morphology change in a Si deposit recovered by means of molten salt electrorefining are evaluated using electrochemical techniques such as cyclic voltammetry and chronopotentiometry at 800°C. It was found that concentration of K2SiF6 and current density were important parameters in determining deposit size. Higher concentrations of K2SiF6 were effective in coarsening the silicon deposit and decreasing the cell potential. Silicon nanofiber was recovered at 5 wt% of K2SiF6 whereas dense particles were prepared at 30 and 50 wt% of K2SiF6. The morphology of the Si deposit was determined by the concentration of Si in the electrolyte which is related to the formation of crystal and growth of Si. The formation mechanism of the Si deposit was interpreted by using high resolution TEM as well as electrochemical properties.
Twórcy
autor
  • Graduate School of Energy Science and Technology
autor
  • Graduate School of Energy Science and Technology
autor
  • Graduate School of Energy Science and Technology
autor
  • Energy Materials Center, Korea Institute of Energy Research, 152 Gajeong-Ro, Yuseong-Gu, 305-343, Daejeon, Republic of Korea
autor
  • Energy Materials Center, Korea Institute of Energy Research, 152 Gajeong-Ro, Yuseong-Gu, 305-343, Daejeon, Republic of Korea
autor
  • Graduate School of Energy Science and Technology
  • Department of Nanomaterials Engineering, Chungnam National University, 79 Daehak-Ro, Yuseong-Gu, 305-764, Daejeon, Republic of Korea
Bibliografia
  • [1] C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, Y. Cui, Nat. Nanotechnol. 3, 31 (2008).
  • [2] T. D. Bogart, A. M. Chockla, B. A. Korgel, Curr. Opin. Chem. Eng. 2, 286 (2013).
  • [3] M. Ge, J. Rong, X. Fang, C. Zhou, Nano Lett. 12, 2318 (2012).
  • [4] D. J. Lee, H. Lee, M. H. Ryou, G. B. Han, J. N. Lee, J. Song, J. Choi, K. Y. Cho, Y. M. Lee, J. K. Park, ACS Appl. Mater. Interfaces 5, 12005 (2013).
  • [5] H. Y. Ryu, Y. S. An, B. Y. Jang, J. S. Lee, H. H. Nersisyan, M. H. Han, J. S. Noh, J. H. Lee, Mater. Chem. Phys. 137, 160 (2012).
  • [6] J. H. Lee, K. H. Oh, Y. H. Kang, S. C. Hwang, H. S. Lee, J. B. Shim, E. H. Kim, S. W. Park, Nucl. Technol. 165, 370 (2009).
  • [7] K. T. Park, T. H. Lee, N.C. Jo, H. H. Nersisyan, B. S. Chun, H. H. Lee, J. H. Lee, J. Nucl. Mater. 436, 130 (2013).
  • [8] M. S. Islam, M. A. Rhamdhani, G. A. Brooks, Solar-grade silicon: current and alternative production routes, Proceedings of ’Engineering a Better World’, the Chemeca 2011 Conference, Sydney, Australia, 2011 (http://www.conference.net.au/chemeca2011/papers/448.pdf).
  • [9] R. Boen, J. Bouteillon, J. Appl. Electrochem. 13, 277 (1983).
  • [10] K. L. Carleton, J. M. Olson, A. Kibbler, J. Electrochem. Soc. 130, 782 (1983).
  • [11] G. J. Kipouros, S. N. Flengas, J. Electrochem. Soc. 132, 1087 (1985).
  • [12] J. Sangster, J. Phase Equilib. Diffus. 27, 190 (2006).
  • [13] S. H. Kim, S. B. Park, S. J. Lee, J. G. Kim, H. S. Lee, J. H. Lee, Nucl. Eng. Des. 257, 12 (2013).
  • [14] R. Bansevicius, J. A. Virbalis, J. Electrostat. 64, 226 (2006).
  • [15] Y. Shibuta, T. Sato, T. Suzuki, H. Ohta, M. Kurata, J. Nucl. Mater. 436, 61 (2013).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-179f7e2d-3c4f-4592-8f8f-b03e4345ca60
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.