Tytuł artykułu
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the paper, an experimental and numerical flow through various kind of arteries is considered. The flow analyses are carried out on the research set up using Particle Image Velocimetry Method (PIV). The individual components of the research set up are discussed and the measurement methodology is explained. The work consists of two parts. The first one is focused on modelling numerical simulation of the stent installation procedure using an expandable balloon and the flow domain design methodology is described. In the final part, an experimental flow test on an artificial silicone vessel (diameter 3.2 mm) with a stent is performed. The results of the experimental tests are compared with a corresponding numerical simulation. The paper presents numerical simulation for two different flow domains and the results obtained from the experimental tests. In both, the experimental tests and numerical simulation, the pulsatile time dependent flow and pressure characteristic are used. Hemodynamic parameters such as the time average wall shear stress (TAWSS) and velocity vector distribution are analysed. The flow was studied at four Reynolds number values (1223; 2257; 3198; 3762) for the straight vessel and at two values for the vessel containing a stent (1223, 2257). A diameter of the vessel was 3.2 mm. Pulsating blood flow based on the data from the experimental test was analysed. During the numerical simulation it was verified which regions of the vessel had TAWSS values below 0.4 Pa. A satisfactory correlation between outcomes of the numerical simulation and the experimental test was obtained. The flow analysis is conducted in ANSYS Fluent software. Additionally, the methodology for defining the velocity profile at the entrance is presented, in order to form the velocity profile in the first step of analysed cases. The study shows possibility to create a new research set up capable of testing various clinical cases of varying pressure values in the setup, or testing the effects of vessel geometrical changes, which allows observing an influence of those parameters on the fluid flow characteristic. As the analysis for the stent has shown, the regions of low TAWSS values are located in a close proximity to the stent struts.
Wydawca
Czasopismo
Rocznik
Tom
Strony
740--751
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr.
Twórcy
autor
- Military University of Technology, Faculty of Mechanical Engineering, Department of Mechanics and Applied Computer Science, Warsaw, Poland
autor
- Military University of Technology, Faculty of Mechanical Engineering, Department of Mechanics and Applied Computer Science, Warsaw, Poland
autor
- Military University of Technology, Faculty of Mechanical Engineering, Department of Mechanics and Applied Computer Science, Warsaw, Poland
autor
- Military University of Technology, Faculty of Mechanical Engineering, Department of Mechanics and Applied Computer Science, Warsaw, Poland
Bibliografia
- [1] Frecentese S, Papathanasiou TK, Movchan AB, Movchan NV. Dispersion of waves and transmission-reflection in blood vessels with structured stents. Proc R Soc A Math Phys Eng Sci 2019;475. http://dx.doi.org/10.1098/rspa.2018.0816.
- [2] Kastrati A, Mehilli J, Dirschinger J, Pache J, Ulm K, Schühlen H, et al. Restenosis after coronary placement of various stent types. Am J Cardiol 2001;87:34–9.
- [3] Dehlaghi V, Shadpoor MT, Najarian S. Analysis of wall shear stress in stented coronary artery using 3D computational fluid dynamics modeling. J Mater Process Technol 2008;197:174–81. http://dx.doi.org/10.1016/J.JMATPROTEC.2007.06.010.
- [4] Gersh BJ, Frye RL. Methods of coronary revascularization — things may not be as they seem. N Engl J Med 2005;352:2235–7. http://dx.doi.org/10.1056/NEJMe058053.
- [5] Sato M, Okada T, Ohara A, Aoki T. Percutaneous coronary intervention of a single coronary artery arising from the right sinus of Valsalva. J Cardiol 2009;54:322–5. http://dx.doi.org/10.1016/j.jjcc.2008.12.005.
- [6] Stiehm M, Wüstenhagen C, Siewert S, Grabow N, Schmitz K-P. Numerical simulation of pulsatile flow through a coronary nozzle model based on FDA's benchmark geometry. Curr Dir Biomed Eng 2017;3:775–8. http://dx.doi.org/10.1515/cdbme-2017-0163.
- [7] Chen Y, Xiong Y, Jiang W, Yan F, Guo M, Wang Q, et al. Numerical simulation on the effects of drug eluting stents at different Reynolds numbers on hemodynamic and drug concentration distribution. Biomed Eng Online 2015;14:S16. http://dx.doi.org/10.1186/1475-925X-14-S1-S16.
- [8] Chaichana T, Sun Z, Jewkes J. Computational fluid dynamics analysis of the effect of plaques in the left Integrative Medicine Research, 40 (2020) 740-751. doi:10.1016/j.bbe.2020.02.010coronary artery. Comput Math Methods Med 2012;2012:1–9. http://dx.doi.org/10.1155/2012/504367.
- [9] Koskinas KC, Chatzizisis YS, Antoniadis AP, Giannoglou GD. Role of endothelial shear stress in stent restenosis and thrombosis: pathophysiologic mechanisms and implications for clinical translation. J Am Coll Cardiol 2012;59:1337–49. http://dx.doi.org/10.1016/J.JACC.2011.10.903.
- [10] Matsuda J, Ikenouchi T, Nitta G, Kato S, Murata K, Kanoh M, et al. Successful percutaneous coronary intervention for atherosclerotic coronary lesion with anomalous origin of the right coronary artery. Case Rep Med 2018;2018:1–7. http://dx.doi.org/10.1155/2018/4232941.
- [11] Zarins CK, Giddens DP, Bharadvaj BK, Sottiurai VS, Mabon RF, Glagov S. Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ Res 1983;53:502–14.
- [12] Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. JAMA 1999;282:2035–42.
- [13] Murphy EA, Boyle FJ. Reducing in-stent restenosis through novel stent flow field augmentation. Cardiovasc Eng Technol 2012;3:353–73. http://dx.doi.org/10.1007/s13239-012-0109-3.
- [14] Chiastra C, Wu W, Dickerhoff B, Aleiou A, Dubini G, Otake H, et al. Computational replication of the patient-specific stenting procedure for coronary artery bifurcations: from OCT and CT imaging to structural and hemodynamics analyses. J Biomech 2016;49:2102–11. http://dx.doi.org/10.1016/j.jbiomech.2015.11.024.
- [15] Chiastra C, Morlacchi S, Gallo D, Morbiducci U, Cardenes R, Larrabide I, et al. Computational fluid dynamic simulations of image-based stented coronary bifurcation models. J R Soc Interface 2013;10. http://dx.doi.org/10.1098/rsif.2013.0193. 20130193–20130193.
- [16] Morbiducci U, Ponzini R, Rizzo G, Cadioli M, Esposito A, Montevecchi FM, et al. Mechanistic insight into the physiological relevance of helical blood flow in the human aorta: an in vivo study. Biomech Model Mechanobiol 2011;10:339–55. http://dx.doi.org/10.1007/s10237-010-0238-2'
- [17] Williams AR, Koo B-K, Gundert TJ, Fitzgerald PJ, LaDisa JF. Local hemodynamic changes caused by main branch stent implantation and subsequent virtual side branch balloon angioplasty in a representative coronary bifurcation. J Appl Physiol 2010;109:532–40. http://dx.doi.org/10.1152/japplphysiol.00086.2010.
- [18] Jodko D, Obidowski D, Reorowicz P, Józwik K. Numerical investigations of the unsteady blood flow in the end-to-side arteriovenous fistula for hemodialysis. Acta Bioeng Biomech Orig Pap 2016;18. http://dx.doi.org/10.5277/ABB-00558-2016-02.
- [19] Jodko D, Obidowski D, Reorowicz P, Józwik K. Blood flows in end-to-end arteriovenous fistulas: unsteady and steady state numerical investigations of three patient-specific cases. Biocybern Biomed Eng 2017;37:528–39. http://dx.doi.org/10.1016/j.bbe.2017.05.006.
- [20] Morlacchi S, Colleoni SG, Cárdenes R, Chiastra C, Diez JL, Larrabide I, et al. Patient-specific simulations of stenting procedures in coronary bifurcations: two clinical cases. Med Eng Phys 2013;35:1272–81. http://dx.doi.org/10.1016/j.medengphy.2013.01.007.
- [21] Tomaszewski M, Baranowski P, Malachowski J, Damaziak K, Bukala J. Analysis of artery blood flow before and after angioplasty. AIP Conf Proc 2018;1922. http://dx.doi.org/10.1063/1.5019068.
- [22] Sakamoto A, Jinnouchi H, Torii S, Virmani R, Finn AV. Understanding the impact of stent and scaffold material Integrative Medicine Research, 40 (2020) 740-751. doi:10.1016/j.bbe.2020.02.010basic and clinical points of view. Bioengineering 2018;5. http://dx.doi.org/10.3390/bioengineering5030071.
- [23] Foin N, Lee RD, Torii R, Guitierrez-Chico JL, Mattesini A, Nijjer S, et al. Impact of stent strut design in metallic stents and biodegradable scaffolds. Int J Cardiol 2014;177:800–8. http://dx.doi.org/10.1016/j.ijcard.2014.09.143.
- [24] Kastrati A, Mehilli J, Dirschinger J, Dotzer F, Schühlen H, Neumann FJ, et al. Intracoronary stenting and angiographic results: strut thickness effect on restenosis outcome (ISAR-STEREO) trial. Circulation 2001;103:2816–21. http://dx.doi.org/10.1161/01.CIR.103.23.2816.
- [25] Sotomi Y, Suwannasom P, Serruys PW, Onuma Y. Possible mechanical causes of scaffold thrombosis: insights from case reports with intracoronary imaging. EuroIntervention 2017;12:1747–56. http://dx.doi.org/10.4244/EIJ-D-16-00471.
- [26] Dardik A, Chen L, Frattini J, Asada H, Aziz F, Kudo FA, et al. Differential effects of orbital and laminar shear stress on endothelial cells. J Vasc Surg 2005;41:869–80. http://dx.doi.org/10.1016/j.jvs.2005.01.020.
- [27] Beier S, Ormiston J, Webster M, Cater J, Norris S, Medrano- Gracia P, et al. Hemodynamics in idealized stented coronary arteries: important stent design considerations. Ann Biomed Eng 2016;44:315–29. http://dx.doi.org/10.1007/s10439-015-1387-3.
- [28] Filipović N, Nikolić D, Saveljić I, Exarchos T, Parodi O. Experimental testing and numerical modelling of stents in the coronary arteries n.d. http://doi.org/10.7251/COMEN1602099F.
- [29] Yu H, Huang GP, Ludwig BR, Yang Z. An in-vitro flow study using an artificial circle of Willis model for validation of an existing one-dimensional numerical model. Ann Biomed Eng 2019;47:1023–37. http://dx.doi.org/10.1007/s10439-019-02211-6.
- [30] Aristotle G. Digital micro piv (mPIV) and velocity profiles in vitro and in vivo. Part. image velocim. - charact. Limits possible appl.. InTech; 2012. http://dx.doi.org/10.5772/36724.
- [31] Gemmell BJ, Jiang H, Buskey EJ. A new approach to micro-scale particle image velocimetry (mPIV) for quantifying flows around free-swimming zooplankton. J Plankton Res 2014;36:1396–401. http://dx.doi.org/10.1093/plankt/fbu067.
- [32] Kloosterman A, Poelma C, Westerweel J. Flow rate estimation in large depth-of-field micro-PIV. Exp Fluids 2011;50:1587–99. http://dx.doi.org/10.1007/s00348-010-1015-9.
- [33] Park C-W, Kim G-B, Lee S-J. Micro-PIV measurements of blood flow in a microchannel. Opt. Diagnostics Sens. IV; 2004. http://dx.doi.org/10.1117/12.529963.
- [34] Cho YI, Kensey KR. Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: steady flows. Biorheology 1991;28:241–62. http://dx.doi.org/10.3233/BIR-1991-283-415.
- [35] Banerjee RK, Ashtekar KD, Helmy TA, Effat MA, Back LH, Khoury SF. Hemodynamic diagnostics of epicardial coronary stenoses: in-vitro experimental and computational study. Biomed Eng Online 2008;7:24. http://dx.doi.org/10.1186/1475-925X-7-24.
- [36] Bukala J, Kwiatkowski P, Malachowski J. Numerical analysis of stent expansion process in coronary artery stenosis with the use of non-compliant balloon. Biocybern Biomed Eng 2016;36:145–56. http://dx.doi.org/10.1016/j.bbe.2015.10.009.
- [37] Tyfa Z, Józwik K, Obidowski D. Numerical analysis of the VAD outflow cannula positioning on the blood flow in the patient-specific brain supplying arteries, vol. 22. 2018.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-17970b22-7b01-431a-8cf8-4b0c6977d66d