PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Localized centers and correlated magnetic spin systems in titanium oxides nanocomposites

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of this review is recapitulating the FMR/EPR study of localized magnetic centers and clusters in co modified nanocomposites titanium dioxide by nitrogen and group of transitions magnetic metals. Design/methodology/approach: In some cases, modified in this way, titanium dioxides improve their photocatalytic properties where localized magnetic moments and spincorrelated systems play a very important role in their physical properties that are important in their applications. Findings: The modified titanium dioxides without introducing ions from the group of transition metals may have EPR spectra of free radicals and titanium ions at a lower oxidation state, which are responsible for the increase in photocatalytic activity. Modifying the additional magnetic ions from the group of transition metals there are additional very intense FMR spectra which are strongly temperature dependent. Static measurements (DC), magnetization as a function of temperature indicate the formation of magnetic orderings, superparamagnetic and paramagnetic state. Research limitations/implications: Modified nano-titanium dioxide composite prognosis applications in catalysis, photovoltaic or in spintronics. Originality/value: A large amount of work appears annually associated with the modified titanium dioxide by the various elements and especially from the group of transition metals and noble gases. Against this background, very little work appears on their dynamic and static magnetic properties that may impact on their ability applications.
Rocznik
Strony
23--31
Opis fizyczny
Bibliogr. 51 poz.
Twórcy
autor
  • Department of Solid State Physics, Faculty of Physics, University of Athens, 15 784 Zografou, Athens, Greece
  • Department of Physics, Faculty Mechanical Engineering and Mechatronic, West Pomeranian University of Technology, Al. Piastów 17, 70-310 Szczecin, Poland
Bibliografia
  • [1] N. Guskos, E.A. Anagnostakis, A. Guskos, FMR study of magnetic nanoparticles embedded in non- magnetic matrix, Journal of Achievements in Materials and Manufacturing Engineering 24 (2007) 26-35.
  • [2] N. Guskos, Low concentration magnetic nanoparticle and localized magnetic centers in different materials: studies by FMR/EPR method, Journal of Achieve- ments in Materials and Manufacturing Engineering 54 (2012) 25-38.
  • [3] H. Irie, Y. Watanabe, K. Hashimoto, Nitrogen- Concentration Dependence on Photocatalytic Activity of TiO2-xNx Powders, The Journal of Physical Chemistry B/107 (2003) 5483-5486.
  • [4] D. Dolat, D. Moszynski, N. Guskos, B. Ohtani, A.W. Morawski, Preparation of photoactive nitrogen-doped rutile, Applied Surface Science 266 (2013) 410-419.
  • [5] A. Abidov, B. Allabergenov, J. Lee, H.W. Jeon, S.W. Jeong, S. Kim, X-Ray Photoelectron Spectroscopy Characterization of Fe Doped TiO2 Photocatalyst, International Journal of Machining and Machinability of Materials 1 (2013) 294-296.
  • [6] D. Dolat, B. Ohtani, S. Mozia, D. Moszy ski, N. Guskos, Z. Lendzion-Bielu , A.W. Morawski, Preparation, characterization and charge transfer studies of nickelmodified and nickel, nitrogen co-modified rutile titanium dioxide for photocatalytic application, Chemical Engineering Journal 239 (2014) 149-157.
  • [7] V.S. Priya, L. Philip, Photocatalytic Degradation of Aqueous VOCs Using N Doped TiO2: Comparison of Photocatalytic Degradation under Visible and Sunlight Irradiation, International Journal of Environmental Science and Development 6 (2015) 286-291.
  • [8] M.A. Mohamed, W.N.W. Salleh, J. Jaafar, A.F. Ismail, Structural characterization of N-doped anataserutile mixed phase TiO2 nanorods assembled microspheres synthesized by simple sol-gel method, The Journal of Sol-Gel Science and Technology 74 (2015) 513-520.
  • [9] T. Yoshida, S. Niimi, M. Yamamoto, T. Nomoto, S. Yagi, Effective nitrogen doping into TiO2 (N-TiO2) for visible light response photocatalysis, The Journal of Colloid and Interface Science 447 (2015) 278-281.
  • [10] A. Daya Mani, S. Muthusamy, S. Anandan, C. Subrahmanyam, C and N doped nano-sized TiO2 for visible light photocatalytic degradation of aqueous pollutants, Journal of Experimental Nanoscience 10 (2015) 115-125.
  • [11] M. Khan, S.R. Gul, J. Li, W. Cao, A.G Mamalis, Preparation, characterization and visible light photocatalytic activity of silver, nitrogen co-doped TiO2 photocatalyst, Materials Research Express 2 (2015) 066201.
  • [12] M.V. Reddy, N. Sharma, S. Adams, R.P. Rao, V.K. Peterson, B.V.R. Chowdari, Evaluation of undoped and M-doped TiO2, where M = Sn, Fe, Ni/Nb, Zr, V, and Mn, for lithium-ion battery applications prepared by the molten-salt method, RSC Advances 5 (2015) 29535-29544.
  • [13] A.M. Stoyanova1, N.K. Ivanova, A.D. Bachvarova- Nedelcheva, R.S. Iordanova, Synthesis and photocatalytic performance of Fe (III), N co-doped TiO2 nanoparticles, Bulgarian Chemical Communications 47 (2015) 330-335.
  • [14] D. Dolat, S. Mozia, R.J. Wróbel, D. Moszy ski, B. Ohtani, N. Guskos, A.W. Morawski, Nitrogendoped, metal-modified rutile titanium dioxide as photocatalysts for water remediation, Applied Catalysis B: Environmental 162 (2015) 310-318.
  • [15] C. Sudakar, P. Kharel, R. Suryanarayanan, J.S. Thakur, V.M. Naik, R. Naik, G. Lawes, Room temperature ferromagnetism in vacuum-annealed TiO2 thin films, International Journal of Machining and Machinability of Materials 320 (2008) L31-L36.
  • [16] L.C.J. Pereira, M.R. Nunes, O.C. Monteiro, A.J. Silvestre, Magnetic properties of Co-doped TiO2 anatase nanopowders, Applied Physics Letters 93 (2008) 222502.
  • [17] H. Peng, J. Li, S.S. Li, J.B. Xia, Possible origin of ferromagnetism in undoped anatase TiO2, Physical Review B 79 (2009) 092411.
  • [18] D. Kim, J. Hong, Y.R. Park, K.J. Kim, The origin of oxygen vacancy induced ferromagnetism in undoped TiO2, Journal of Physics: Condensed Matter 21 (2009) 195405.
  • [19] N.N. Bao, H.M. Fan, J. Ding, J.B. Yi, Room temperature ferromagnetism in N-doped rutile TiO2 films, Journal of Applied Physics 109 (2011) 07C302.
  • [20] M. Parras, Á. Varela, R. Cortés-Gil, K. Boulahya, A. Hernando, J.M. González-Calbet, Room-Temperature Ferromagnetism in Reduced Rutile TiO2!" Nanoparticles, The Journal of Physical Chemistry Letters 4 (2013) 2171-2176.
  • [21] S. Wang, L. Pan, J.J. Song, W. Mi, J.J. Zou, L. Wang, X. Zhang, Titanium-Defected Undoped Anatase TiO2 with p-Type Conductivity, Room-Temperature Ferromagnetism, and Remarkable Photocatalytic Performance, Journal of the American Chemical Society 137 (2015) 2975-2983.
  • [22] A.S. Semisalova, Yu.O. Mikhailovsky, A. Smekhova, A.F. Orlov, N.S. Perov, E.A. Gan’shina, A. Lashkul, E. Lähderanta, K. Potzger, O. Yildirim, B. Aronzon, A.B. Granovsky, Above Room Temperature Ferromagnetism in Co- and V-Doped TiO2-Revealing the Different Contributions of Defects and Impurities, Journal of Superconductivity and Novel Magnetism 28 (2015) 2975-2983.
  • [23] N. Guskos, S. Glenis, G. Zolnierkiewicz, A. Guskos, J. Typek, P. Berczynski, D. Dolat, S. Mozia, A.W. Morawski, Magnetic properties of co-modified Fe,N-TiO2 nanocomposites, Open Physics 13 (2015) 76-86.
  • [24] Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Koshihara, H. Koinuma, Room temperature ferromagnetism in transparent transition metal-doped titanium dioxide, Science 291 (2001) 854-856.
  • [25] J.M. Coronado, A.J. Maira, J.C. Conesa, K.L. Yeung, V. Augugliaro, J. Soria, EPR study of the surface characteristics of nanostructured TiO2 under UV irradiation, Langmuir 17 (2001) 5368-5374.
  • [26] G. Mele, R. Del Sole, G. Vasapollo, G. Marcõ, E.G. Lopez, L. Palmisano, J.M. Coronado, M.D.H. Alonso, C. Malitesta, M.R. Guascito, TRMC, XPS, and EPR characterizations of polycrystalline TiO2 porphyrin impregnated powders and their catalytic activity for 4-nitrophenol photodegradation in aqueous suspension, The Journal of Physical Chemistry B 109 (2005) 12347-12352.
  • [27] S.D. Yoon, Y. Chen, A. Yang, T.L. Goodrich, X. Zuo, D.A. Arena, K. Ziemer, C. Vittoria, V.G. Harris, Oxygen-defect-induced magnetism to 880 K in semiconducting anatase TiO2 D. films, Journal of Physics Condensed Matter 18 (2006) L355-L361.
  • [28] J.M.D. Coey, Curr. Opin, Dilute magnetic oxides, Solid State and Materials Science 10 (2006) 83-92.
  • [29] N. Serpone, Is the band gap of pristine TiO2 narrowed by anion- and cationdoping of titanium dioxide in second-generation photocatalysts?, The Journal of Physical Chemistry B 110 (2006) 24287-24293.
  • [30] V.N. Kuznetsov, N. Serpone, Visible light absorption by various titanium dioxide specimens, The Journal of Physical Chemistry B 110 (2006) 25203-25209.
  • [31] C. Di Valentin, E. Finazzi, G. Pacchioni, A. Selloni, S. Livraghi, M.C. Paganini, E. Giamello, N-doped TiO2: theory and experiment, Chemical Physics 339 (2007) 44-56.
  • [32] M.K. Nowotny, L.R. Sheppard, T. Bak, J. Nowotny, Defect chemistry of titanium dioxide. application of defect engineering in processing of TiO2-based photocatalysts, The Journal of Physical Chemistry C 112 (2008) 5275-5300.
  • [33] X. Wei, R. Skomski, B. Balamurugan, Z.G. Sun, S. Ducharme, D.J. Sellmyer, Magnetism of TiO and TiO2 nanoclusters Journal of Applied Physics 105 (2009) 07C517/1-07C517/3.
  • [34] S. Yang, L.E. Halliburton, A. Manivannan, P.H. Bunton, D.B. Baker, M. Klemm, S. Horn, A. Fujishima, Photoinduced electron paramagnetic resonance study of electron traps in TiO2 crystals: oxygen vacancies and Ti3+ ions, Applied Physics Letters 94 (2009) 162114/1-162114/3.
  • [35] B. Tian, C. Li, F. Gu, H. Jiang, Y. Hu, J. Zhang, Flame sprayed V-doped TiO2 nanoparticles with enhanced photocatalytic activity under visible light irradiation, The Chemical Engineering Journal 151 (2009) 220-227.
  • [36] F.D. Brandao, M.V.B. Pinheiro, G.M. Ribeiro, G. Medeiros-Ribeiro, K. Krambrock, Identification of two light-induced charge states of the oxygen vacancy in single-crystalline rutile TiO2, Physical Review B 80 (2009) 235204/1-235204/7.
  • [37] S. Yang, A.T. Brant, L.E. Halliburton, Photoinduced self-trapped hole center in TiO2 crystals, Physical Review B 82 (2010) 035209/1-035209/5.
  • [38] I.R. Macdonald, R.F. Howe, X. Zhang, W. Zhou, In situ EPR studies of electro trapping in a nanocrystalline rutile, Journal of Photochemistry and Photobiology A: Chemistry 216 (2010) 238-243.
  • [39] I.A. Shkrob, T.W. Marin, S.D. Chemerisov, M.D. Sevilla, Mechanistic aspects of photooxidation of polyhydroxylated molecules on metal oxides, The Journal of Physical Chemistry C 115 (2011) 4642-4648.
  • [40] B. Park, N.H. You, E. Reichmanis, Exciton dissociation and charge trapping at poly(3-hexylthiophene)/ phenyl-C61-butyric acid methyl ester bulk heterojunction interfaces: photo-induced threshold voltage shifts in organic field-effect transistors and solar cells, Journal of Applied Physics 111 (2012) 084908/1-084908/7.
  • [41] S.R. Cowan, J. Wang, J. Yi, Y-J. Lee, D.C. Olson, J.W.P. Hsu, Intensity and wavelength dependence of bimolecular recombination in P3HT:PCBM solar cells: A white-light biased external quantum efficiency study, Journal of Applied Physics 113 (2013) 154504/1-154504/9.
  • [42] N. Guskos, A. Guskos, J. Typek, P. Berczynski, D. Dolat, B. Grzmil, A. Morawski, Influence of annealing and rinsing on magnetic and photocatalytic properties of TiO2, Materials Science and Engineering: B 177 (2012) 223-227.
  • [43] N. Guskos, A. Guskos, G. Zolnierkiewicz, J. Typek, P. Berczynski, D. Dolat, B. Grzmil, B. Ohtani, A.W. Morawski, EPR, spectroscopic and photocatalytic properties of N-modified TiO2 prepared by different annealing and waterrinsing processes, Materials Chemistry and Physics 136 (2012) 889-896.
  • [44] N. Guskos, J. Typek, A. Guskos, P. Berczynski, D. Dolat, B. Grzmil, A. Morawski, Magnetic resonance study of annealed and rinsed N-doped TiO2 nanoparticles, Central European Journal of Chemistry 11 (2013) 1994-2004.
  • [45] N. Guskos, S. Glenis, G. Zolnierkiewicz, A. Guskos, J. Typek, P. Berczynski, D. Dolat, B. Grzmil, B. Ohtani, A.W. Morawski, Magnetic resonance study of co-modified (Fe,N)-TiO2,. Journal of Alloys and Compounds 606 (2014) 32-36.
  • [46] N. Guskos, G. Zolnierkiewicz, A. Guskos, J. Typek, P. Berczynski, D. Dolat, S. Mozia, C. Aidinis, A.W. Morawski, Magnetic resonance study of comodified (Co,N)-TiO2 nanocomposites, Nukleonica 60 (2015) 411-416
  • [47] N. Guskos, G. Zolnierkiewicz, A. Guskos, J. Typek, P. Berczynski, D. Dolat, S. Mozia, A.W. Morawski, Magnetic Resonance Study of Nickel and Nitrogen comodified Titanium Dioxide Nanocomposites, Nanotechnology in the Security Systems, NATO Science for Peace and Security Series C: Environmental Security (2015) 33-47.
  • [48] J. Kliava, In: Gubin SP (ed), Magnetic nanoparticles, Wiley-VCH, Weinheim, 2009, 255.
  • [49] A. Helminiak, W. Arabczyk, G. Zolnierkiewicz, N. Guskos, J. Typek, FMR study of the influence of carburization levels by methane decomposition on nanocrystalline iron, Reviews On Advanced Materials Science 29 (2011) 166-174.
  • [50] N. Guskos, G. Zolnierkiewicz, A. Guskos, J. Typek, J. Blyszko, W. Kiernozycki, U. Narkiewicz, M. Podsiadly, Magnetic properties of micro-silica/cement matrix with carbon coated cobalt nanoparticles and free radical DPPH, The Journal of Non-Crystalline Solids 354 (2008) 4510-4514.
  • [51] N. Guskos, J. Typek, B.V. Padlyak, Yu.K. Gorelenko, I. Pelech, U. Narkiewicz, E. Senderek, A. Guskos, Z. Roslaniec, In situ synthesis, morphology and magnetic properties poly(ether-ester) multiblock copolymer/carbon-covered nickel nanosystem, The Journal of Non-Crystalline Solids 356 (2010) 37-42.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-17939773-e711-4c9e-95a1-0953fb07a195
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.