Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We investigate fractional moments and expectations of power means of complex-valued random variables by using fractional calculus. We deal with both negative and positive orders of the fractional derivatives. The one-dimensional distributions are characterized in terms of the fractional moments without any moment assumptions. We explicitly compute the expectations of the power means for both the univariate Cauchy distribution and the Poincaré distribution on the upper half-plane. We show that for these distributions the expectations are invariant with respect to the sample size and the value of the power.
Czasopismo
Rocznik
Tom
Strony
133--156
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
- Department of Mathematics Shizuoka University Shizuoka city, Shizuoka, Japan
autor
- Department of Mathematics Shinshu University Matsumoto city, Nagano, Japan
Bibliografia
- [1] Y. Akaoka, K. Okamura, and Y. Otobe, Properties of complex-valued power means of random variables and their applications, Acta Math. Hungar. 171 (2023), 124-175.
- [2] M. Barczy and P. Burai, Limit theorems for Bajraktarevi´c and Cauchy quotient means of independent identically distributed random variables, Aequationes Math. 96 (2022), 279-305.
- [3] M. Barczy and Z. Páles, Limit theorems for deviation means of independent and identically distributed random variables, J. Theor. Probab. 36 (2023), 1626-1666.
- [4] N. Cressie and M. Borkent, The moment generating function has its moments, J. Statist. Planning Inference 13 (1986), 337-344.
- [5] M. de Carvalho, Mean, what do you mean? Amer. Statistician 70 (2016), 270-274.
- [6] B. de Finetti, Sul concetto di media, Giornale dell’Instituto Italiano degli Attuarii 2 (1931), 369-396.
- [7] A. N. Kolmogorov, Sur la notion de la moyenne, Atti Accad. Nazionale dei Lincei 12 (1930), 388-391.
- [8] G. Laue, Remarks on the relation between fractional moments and fractional derivatives of characteristic functions, J. Appl. Probab. 17 (1980), 456-466.
- [9] G. D. Lin, Characterizations of distributions via moments, Sankhyā Ser. A 54 (1992), 128-132.
- [10] A. Marchaud, Sur les dérivées et sur les différences des fonctions de variables réelles, J. Math. Pures Appl. (9) 6 (1927), 337-425.
- [11] M. Matsui and Z. Pawlas, Fractional absolute moments of heavy tailed distributions, Brazil. J. Probab. Statist. 30 (2016), 272-298.
- [12] M. Nagumo, Über eine Klasse der Mittelwerte, Japan. J. Math. 7 (1930), 71-79.
- [13] F. Nielsen and K. Okamura, On the f -divergences between hyperboloid and Poincaré distributions, in: Geometric Science of Information, GSI 2023, Lecture Notes in Computer Sci. 14071, Springer, Cham, 2023, 176-185.
- [14] K. Okamura, Characterizations of the Cauchy distribution associated with integral transforms, Studia Sci. Math. Hungar. 57 (2020), 385-396.
- [15] K. B. Oldham and J. Spanier, The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order, Math. Sci. Engrg. 111, Elsevier, Amsterdam, 1974.
- [16] H. Royden and P. M. Fitzpatrick, Real Analysis, 4th ed., Prentice-Hall, New York, 2010.
- [17] W. Rudin, Real and Complex Analysis, 3rd ed., McGraw-Hill, New York, 1987.
- [18] K. Tojo and T. Yoshino, An exponential family on the upper half plane and its conjugate prior, in: Workshop on Joint Structures and Common Foundations of Statistical Physics, Information Geometry and Inference for Learning, Springer, 2020, 84-95.
- [19] K. Tojo and T. Yoshino, Harmonic exponential families on homogeneous spaces, Information Geom. 4 (2021), 215-243.
- [20] D. Williams, Probability with Martingales, Cambridge Univ. Press, Cambridge, 1991.
- [21] S. J. Wolfe, On moments of probability distribution functions, in: Fractional Calculus and Applications (New Haven, CN, 1974), Lecture Notes in Math. 457, Springer, 1975, 306-316.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-17906595-8888-4e55-b90b-17be2fbbd82e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.