PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Rapid capture and exemplary detection of clinical pathogen using surface modified fluorescent silica coated iron oxide nanoparticles

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Rapid, sensitive and selective detection of pathogenic bacteria is very important for treat- ment of diseases like foodborne illness, sepsis and bioterrorism. The silica coated iron oxide nanoparticles (SIO) were synthesized using simple, cost-effective method and used for the rapid capture and detection of clinical pathogen. The surface modification of nanoparticles was carried out using 3-aminopropyltriethoxy silane. The scanning electron microscopy image results showed the slightly agglomerated spherical shaped nanoparticles. Transmis-sion electron microscope result showed the polydispersed particles in the size ranges from 5 to 12 nm. The EDAX results confirmed the coating of silica with iron oxide particles. The SAED pattern confirmed the crystalline nature of iron oxide nanoparticles and also indicated the presence of silica. The FTIR spectrum of the nanoparticles confirmed the functional groups of the iron oxide and surface modified fluorescent silica coated iron oxide nano-particles (SFSIO). This work provides a very effective method for controlling the growth, capture and detection of pathogenic bacteria.
Twórcy
autor
  • Environmental Nanotechnology Division, Sri Paramakalyani Centre for Environmental Sciences, Manonmaniam Sundaranar University, Tamil Nadu, India
autor
  • Environmental Nanotechnology Division, Sri Paramakalyani Centre for Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi 627412, Tamil Nadu, India
Bibliografia
  • [1] Singh LP, Bhattacharyya SK, Mishra G, Ahalawat S. Functional role of cationic surfactant to control the nano size of silica powder. Appl Nanosci 2011;1:117–22.
  • [2] Chaudhari PR, Masurkar SA, Shidore VB, Kamble SP. Effects of biosynthesized silver nanoparticles on Staphylococcus aureus biofilm quenching and prevention of biofilm formation. Int J Pharm Bio Sci 2012;3:222–9.
  • [3] Henglein A. Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem Rev 1989;89:1861–73.
  • [4] Vatta LL, Sanderson RD, Koch KR. Magnetic nanoparticles: properties and potential applications. Pure Appl Chem 2006;78:1793–801.
  • [5] Huang C, Hu B. Silica-coated magnetic nanoparticles modified with g-mercaptopropyltrimethoxysilane for fast and selective solid phase extraction of trace amounts of Cd, Cu, Hg and Pb in environmental and biological samples prior to their determination by inductively couples plasma mass spectrometry. Spectrochim Acta B 2008;63:437–44.
  • [6] Berry CC, Curtis ASG. Functionalisation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 2003;36:198–206.
  • [7] Li GY, Jiang YR, Huang KL, Ding P, Chen J. Preparation and properties of magnetic Fe3O4–chitosan nanoparticles. J Alloys Compd 2008;466:451–6.
  • [8] Dozier D, Palchoudhury S, Bao Y. Synthesis of iron oxide nanoparticles with biological coatings. Joshus 2010;7:16–8.
  • [9] Ren C, Li J, Liu Q, Ren J, Chen X, Hu Z, et al. Synthesis of organic dye-impregnated silica shell-coated iron oxide nanoparticles by a new method. Nanoscale Res Lett 2008;3:496–501.
  • [10] Smith JE, Wang L, Tan W. Bioconjugated silica-coated nanoparticles for bioseparation and bioanalysis. Trends Anal Chem 2006;25:848–55.
  • [11] EI-Boubbou K, Gruden C, Huang X. Magnetic glyco-nanoparticles: a unique tool for rapid pathogen detection, decontamination and strain differentiation. J Am Chem Soc 2007;129:13392–3.
  • [12] Goransson J, Torre TZGDL, Stromberg M, Russell C, Svedlindh P, Stromme M, et al. Sensitive detection of bacterial DNA by magnetic nanoparticles. Lett Anal Chem 2010;82:9138–40.
  • [13] Lu Y, Yi YD, Mayers BT, Xia YN. Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol–gel approach. Nano Lett 2002;2:183–6.
  • [14] Zhang ZC, Zhang LM, Chen L, Chen LG, Wan QH. Synthesis of novel porous magnetic silica microspheres as adsorbents for isolation of genomic DNA. Biotechnol Prog 2006;22:514–8.
  • [15] Takafuji M, Ide S, Ihara H, Xu Z-H. Preparation of poly (1-vinylimidazole)-grafted magnetic nanoparticles and their application for removal of metal ions. Chem Mater 2004;16:1977–83.
  • [16] Chen D, Jiang J, Li N, Gu H, Xu Q, Ge J, et al. Modification of magnetic silica/iron oxide nanocomposites with fluorescent polymethacrylic acid for cancer targeting and drug delivery. J Mater Chem 2010;20:6422–9.
  • [17] Yamaura M, Camilo RL, Sampaio LC, Macedo MA, Nakamura M, Toma HE. Preparation and characterization of (3-aminopropyl) triethoxysilane-coated magnetite nanoparticles. J Magn Magn Mater 2004;279:210–7.
  • [18] Kim KD, Kim SS, Choa YH, Kim HT. Formation and surface modification of Fe3O4 nanoparticles by co-precipitation and sol–gel method. J Ind Eng Chem 2007;13:1137–41.
  • [19] Iida H, Takayanagi K, Nakanishi T, Osaka T. Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties by controlled hydrolysis. J Colloid Interface Sci 2007;314:274–80.
  • [20] Deng YH, Wang CC, Hu JH, Yang WL, Fu SK. Investigation of formation of silica-coated magnetite nanoparticles via sol–gel approach. Colloids Surf A Physicochem Eng Asp 2005;262:87–93.
  • [21] Yang D, Hu J, Fu S. Controlled synthesis of magnetite–silica nanocomposites via a sol–gel approach. J Phys Chem C 2009;113:7646–51.
  • [22] Yoo MK, Kim IY, Kim EM, Jeong HJ, Lee CM, Jeong YY, et al. Superparamagnetic iron oxide nanoparticles coated with galactose-carrying polymer for hepatocyte targeting. J Biomed Biotechnol 2007;10:1–9.
  • [23] Barick KC, Bahadur D. Assembly of Fe3O4 nanoparticles on SiO2 monodisperse spheres. Bull Mater Sci 2006;29:595–8.
  • [24] Lopez T, Mendez J, Zamudio T, Villa M. Mater Chem Phys 1992;30:161.
  • [25] Ren C, Li J, Chen X, Hu Z, Xue D. Preparation and properties of a new multifunctional material composed of superparamagnetic core and Rhodamine B doped silica shell. Nanotechnology 2007;18:345604–10.
  • [26] Tran N, Mir A, Mallik D, Sinha A, Nayar S, Webster TJ. Bactericidal effect of iron oxide nanoparticles on Staphylococcus aureus. Int J Nanomed 2010;5:277–83.
  • [27] Keenan CR, Sedlak DL. Factors affecting the yield of oxidants from the reaction of nanoparticulate zero-valent iron and oxygen. Environ Technol 2008;42:1262–7.
  • [28] Lee C, Kim JY, Lee WI, Nelson KL, Yoon J, Sedlak DL. Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli. Environ Technol 2008;42:4927–33.
  • [29] Wang C, Irudayaraj J. Multifunctional magnetic-optical nanoparticles probes for simultaneous detection, separation, and thermal ablation of multiple pathogens. Nano Small 2010;6:283–9.
  • [30] Wilson WW, Wade MM, Holman SC, Champlin FR. Status of methods for assessing bacterial cell surface charge properties based on zeta potential measurements. J Microbiol Methods 2001;43:153–64.
  • [31] Huang FY, Fanwangy S, Pingyan A. Amine-functionalized magnetic nanoparticles for rapid capture and removal of bacterial pathogens. Environ Sci Technol 2010;44: 7908–13.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-178dde84-4613-4ea0-804b-fa5995972219
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.