PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Manufacturing of thin-walled, complex polymer parts by DLP printing – the influence of process parameters on crosslinking density

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study investigated the relationship between the parameters of the DLP manufacturing process and the structure of photopolymerizable acrylic resins. Four different process parameters were established to produce different thin-walled acrylic sample series: exposure time, layer thickness, area offset, and number of transition layers. The structure and the surface of the obtained samples were examined with the use of the FTIR–ATR method and an optical microscope, respectively. It was proved that extension of the exposure time increases the density of crosslinking and sample thickness. A decreasing crosslinking density due to rising layer thickness is observed. The area offset affects only the dimensions of the sample, predictably reducing the dimensions of the sample as the compensation increases. The absence of transition layers proved unfavorable in many respects, both structurally and geometrically.
Rocznik
Strony
art. no. e145936
Opis fizyczny
Bibliogr. 59 poz., rys., tab.
Twórcy
  • Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
  • Faculty of Mechanical Engineering, Poznan University of Technology, Piotrowo 3, 61-138 Poznan, Poland
  • Faculty of Mechanical Engineering, Poznan University of Technology, Piotrowo 3, 61-138 Poznan, Poland
  • Faculty of Mechanical Engineering, Poznan University of Technology, Piotrowo 3, 61-138 Poznan, Poland
Bibliografia
  • [1] S. Mcnair et al., “Manufacturing technologies and joining methods of metallic thin-walled pipes for use in high pressure cooling systems,” Int. J. Adv. Manuf. Technol., vol. 118, pp. 667–681, 2022, doi: 10.1007/s00170-021-07982-8.
  • [2] C. Kailasanathan, S. Saravanan, E. Natarajan, and B. Stalin, “Polyoxymethylene/talc composite: Investigation of warpage, mechanical and thermal properties for thin walled-injection molding applications,” J. Appl. Polym. Sci., vol. 139, pp. e51762-1–e51762-12, 2022, doi: 10.1002/app.51762.
  • [3] A. Ornat, M. Uliasz, G. Bomba, A. Burghardt, K. Kurc, and D. Szybicki, “Robotised Geometric Inspection of Thin-Walled Aerospace Casings,” Sensors, vol. 22, pp. 3457-1–3457-17, 2022, doi: 10.3390/s22093457.
  • [4] P. Muszyński, P. Poszwa, A. Gessner, and K. Mrozek, “Application of Selective Induction Heating for Improvement of Mechanical Properties of Elastic Hinges,” Materials, vol. 14, pp. 2543-1–2543-13, 2021, doi: 10.3390/ma14102543.
  • [5] X. Wang et al., “Electrospun Thin-Walled CuCo2O4@C Nanotubes as Bifunctional Oxygen Electrocatalysts for Rechargeable Zn−Air Batteries,” Nano Lett., vol. 17, pp. 7989–7994, 2017, doi: 10.1021/acs.nanolett.7b04502.
  • [6] R. Kulkarni et al., “An Assessment of Thermoset Injection Molding for Thin-WalledConformal Encapsulation of Board-Level Electronic Packages,” J. Manuf. Mater. Process., vol. 3, pp. 18-1–18-16, 2019, doi: 10.3390/jmmp3010018.
  • [7] K. Mrozek and S. Chen, “Selective induction heating to eliminate the fundamental defects of thin-walled moldings used in electrical industry,” J. Appl. Polym. Sci., vol. 44992, pp. 44992-1–44992-17, 2017, doi: 10.1002/APP.44992.
  • [8] S. Nian, C. Wu, and M. Huang, “Warpage control of thin-walled injection molding using local mold temperatures,” Int. Commun. Heat Mass Transf., vol. 61, pp. 102–110, 2015, doi: 10.1016/j.icheatmasstransfer.2014.12.008.
  • [9] Q. Feng, L. Liu and X. Zhou, “Automated multi-objective optimization for thin-walled plastic products using Taguchi, ANOVA, and hybrid ANN-MOGA,” Int. J. Adv. Manuf. Technol., vol. 106, pp. 559575, 2020, doi: 10.1007/s00170-019-04488-2.
  • [10] W. Kuczko, A. Hamrol, R. Wichniarek, F. Górski, and M. Rogalewicz, “Mechanical properties and geometric accuracy of angle-shaped parts manufactured using the FFF method,” Bull. Pol. Acad. Sci.-Tech. Sci., vol. 69, no. 3, pp. e137387-1–e1317387-9, 2021, doi: 10.24425/bpasts.2021.137387.
  • [11] S. Gao, C. Wang, B. Xing, M. Shen, W. Zhao, and Z. Zhao, “Experimental investigation on bending behaviour of ZrO2 honeycomb sandwich structures prepared by DLP stereolitography,” Thin-Walled Struct., vol. 157, pp. 107099-1–107099-12, 2020, doi: 10.1016/j.tws.2020.107099.
  • [12] S. Li, M. Hu, L. Xiao, and W. Song, “Compressive properties and collapse behavior of additively-manufactured layered-hybrid lattice structures under static and dynamic loadings,” Thin-Walled Struct., vol. 157, pp. 107153-1–107153-22, 2020, doi: 10.1016/j.tws.2020.107153.
  • [13] M. Lebedevaite, V. Talacka, and J. Ostrauskaite, “High biorenewable content acrylate photocurable resins for DLP 3D printing,” J. Appl. Polym. Sci., vol. 138, pp. 1–13, 2020, doi: 10.1002/app.50233.
  • [14] G. Qi, Y. Zeng, and J. Chen, “Preparation of porous SnO2-based ceramics with lattice structure by DLP,” Ceram. Int., vol. 48, pp. 14568–14577, 2022, doi: 10.1016/j.ceramint.2022.01.350.
  • [15] M. Gregorini, R. Grass, and W. Stark, “One-Step Photolithographic Surface Patterning of Nanometer-Thick Gold Surfaces by Using a Commercial DLP Projector and the Fabrication of a Microheater,” Ind. Eng. Chem. Res., vol. 59, pp. 12048–12055, 2020, doi: 10.1021/acs.iecr.9b05837.
  • [16] Y. Du, G. Zhao, G. Shi, Y. Wang, W. Li, and S. Ren, “Effect of crosslink structure on mechanical properties, thermal stability and flame retardancy of natural flavonoid based epoxy resins,” Eur. Polym. J., vol. 162, pp. 110898-1–110898-8, 2022, doi: 10.1016/j.eurpolymj.2021.110898.
  • [17] S. Tsai, L. Chen, C. Chu, W. Chao, and Y. Liao, “Photo curable resin for 3D printed conductive structures,” Addit. Manuf., vol. 51, pp. 102590-1–102590-8, 2022, doi: 10.1016/j.addma.2021.102590.
  • [18] J. Choi, H. Song, J. Jung, J. Yu, N. You, and M. Goh, “Effect of crosslink density on thermal conductivity of epoxy/carbon nanotube nanocomposites,” J. Appl. Polym. Sci., vol. 44253 pp. 1–7, 2017, doi: 10.1002/APP.44253.
  • [19] Y. Li, Q. Mao, J. Yin, Y. Wang, J. Fu, and Y. Huang, “Theoretical prediction and experimental validation of the digital light processing (DLP) working curve for photocurable materials,” Addit. Manuf., vol. 37, pp. 101716-1–101716-10, 2021, doi: 10.1016/j.addma.2020.101716.
  • [20] A. Guerra et al., “Optimisation of photocrosslinkable resin components and 3D printing process parameters,” Acta Biomater., vol. 97, pp. 154–161, 2019, doi: 10.1016/j.actbio.2019.07.045.
  • [21] A. Bagheri and J. Jin, “Photopolymerization in 3D Printing,” ACS Appl. Polym. Mater., vol. 1, pp. 593–611, 2019, doi: 10.1021/acsapm.8b00165.
  • [22] C. Noè et al., “DLP-printable fully biobased soybean oil composites,” Polymer, vol. 247, pp. 124779-1–124779-9, 2022, doi: 10.1016/j.polymer.2022.124779.
  • [23] M. Lebedevaite, V. Talacka, and J. Ostrauskaite, “High biorenewable content acrylate photocurable resins for DLP 3D printing,” J. Appl. Sci., vol. 138, pp. e50233-1–e50233-13, 2021, doi: 10.1002/app.50233.
  • [24] D. Patel, A. Sakhaei, M. Layani, B. Zhang, Q. Ge, and S. Magdassi, “Highly Stretchable and UV Curable Elastomers for Digital Light Processing Based 3D Printing,” Adv. Mater., vol. 29, no. 15, p. 1606000, 2017, doi: 10.1002/adma.201606000.
  • [25] G. Yang, M. He, S. Zhang, M. Wu, and Y. Gao, “An acryl resin-based swellable microneedles for controlled release intradermal delivery of granisetron,” Drug Dev. Ind. Pharm., vol. 44, pp. 808–816, 2018, doi: 10.1080/03639045.2017.1414230.
  • [26] X. Zijie, L. Chao, X. Guilong, and H. Jian, “Modification of polyacrylate resin to prepare water-soluble poly-epoxy-acrylate resin for its application as an automotive oil filter paper binder,” J. Vinyl Addit. Technol., vol. 27, pp. 833–840, 2021, doi: 10.1002/vnl.21854.
  • [27] Y. Dou, F. Li, B. Tang, and G. Zhou, “Surface Wettability Tuning of Acrylic Resin Photoresist and Its Aging Performance,” Sensors, vol. 21, no. 14, pp. 4866-1–4866-11, 2021, doi: 10.3390/s21144866.
  • [28] A. Ghavami-Nejad et al., “Glucose-Responsive Composite Microneedle Patch for Hypoglycemia-Triggered Delivery of Native Glucagon,” Adv. Mater., vol. 31, pp. 1901051-1–1901051-7, 2019, doi: 10.1002/adma.201901051.
  • [29] A. Kundu et al., “DLP 3D Printed “Intelligent” Microneedle Array (iμNA) for Stimuli Responsive Release of Drugs and Its in Vitro and ex Vivo Characterization,” J. Microelectromech. Syst., vol. 29, no. 5, pp. 685–691, 2020, doi: 10.1109/JMEMS.2020.3003628.
  • [30] Q. Luo et al., “Preparation and Properties of Novel Modified Waterborne Polyurethane Acrylate,” Coatings, vol. 12, pp. 1135-1–1135-14, 2022, doi: 10.3390/coatings12081135.
  • [31] D. Kunwong, N. Sumanochitrapom, and S. Kaewpirom, “Curing behavior of a UV-curable coating based on urethane acrylate oligomer: the influence of reactive monomers,” Songklanakarin J. Technol., vol. 33, no. 2, pp. 201–207, 2011.
  • [32] H. Xiang et al., “Preparation, Characterization and Application of UV-Curable Flexible Hyperbranched Polyurethane Acrylate,” Polymers, vol. 9, pp. 552-1–552-12, 2017, doi: 10.3390/polym9110552.
  • [33] R. Wool, “7 – Properties of Triglyceride-Based Thermosets,” in Bio-Based Polymers and Composites, 1st ed., R. Wool and X. Sun, Eds. Elsevier Academic Press, 2005, pp. 202-225.
  • [34] H. Memon, Y. Wei, and C. Zhu, “Correlating the thermomechanical properties of a novel bio-based epoxy vitrimer with its crosslink density,” Mater. Today Commun., vol. 29, pp. 102814-1–102814-7, 2021, doi: 10.1016/j.mtcomm.2021.102814.
  • [35] J. Yu et al., “Enhancement of the crosslink density, glass transition temperature, and strength of epoxy resin by using functionalized graphene oxide co-curing agents,” Polym. Chem., vol. 7, pp. 36–43, 2016, doi: 10.1039/C5PY01483B.
  • [36] A. Lesser, “Effect of Resin Crosslink Density on the Impact Damage Resistance of Laminated Composites,” Polym. Compos., vol. 18, pp. 16–27, 1997, doi: 10.1002/pc.10257.
  • [37] J. Meng et al., “Flame Retardancy and Mechanical Properties of Bio-Based Furan Epoxy Resins with High Crosslink Density,” Macromol. Mater. Eng., vol. 305, pp. 1900587-1–1900587-8, 2020, doi: 10.1002/mame.201900587.
  • [38] A. Bandyopadhyay, P. Valavala, T. Clancy, K. Wise, and G. Odegard, “Molecular modeling of crosslinked epoxy polymers: The effect of crosslink density on thermomechanical properties,” Polymer, vol. 52, no. 11, pp. 2445–2452, 2011, doi: 10.1016/j.polymer.2011.03.052.
  • [39] K. Hu, W. Kong, X. Fu, C. Zhou, and J. Lei, “Resistivity optimization and properties of silver nanoparticles-filled alcohol-soluble conductive coating based on acrylic resin,” High Perform. Polym., vol. 27, pp. 8-1–8-9, 2015, doi: 10.1177/0954008314566433.
  • [40] A. Alshamrani, R. Raju, and A. Ellakwa, “Effect of Printing Layer Thickness and Postprinting Conditions on the Flexural Strength and Hardness of a 3D-Printed Resin,” Biomed Res. Int., vol. 2022, pp. 8353137-1–8353137-9, 2022, doi: 10.1155/2022/8353137.
  • [41] M. Borlaf, L. Conti, and T. Graule, “Influence of tensile edge design and printing parameters on the flexural strength of ZrO2 and ATZ bars prepared by UV-LCM-DLP,” Open Ceram., vol. 5, pp. 100066-1–10006-5, 2021, doi: 10.1016/j.oceram.2021.100066.
  • [42] D. Seprianto, R. Sugiantoro, Sipironi, Yahya and M. Erwin, “The Effect of Rectangular Parallel Key Manufacturing Process Parameters Made with Stereolithography DLP 3D Printer Technology Against Impact Strength,” J. Phys.-Conf. Ser., vol. 1500, pp. 012028-7–012028-7, 2020, doi: 10.1088/1742-6596/1500/1/012028.
  • [43] A. Saed, A. Behravesh, S. Hasannia, S. Ardebili, B. Akhoundi, and M. Pourghayoumi, “Functionalized poly-L-lactic acid synthesis and optimization of process parameters for 3D printing of porous sca?olds via digital light processing (DLP) method,” J. Manuf. Process., vol. 56, pp. 550–561, 2020, doi: 10.1016/j.jmapro.2020.04.076.
  • [44] G. Qi, Y. Zeng, and J. Chen, “Preparation of porous SnO2-based ceramics with lattice structure by DLP,” Ceram Int., vol. 48, pp. 14568–14577, 2022, doi: 10.1016/j.ceramint.2022.01.350.
  • [45] J. Redutko, A. Kalwik, and A. Szarek, “Influence of Curing Time on Properties of Dental Photosensitive Resin Applied in DLP Technique of 3D Printing,” Arch. Metall. Mater., vol. 66, no. 2, pp. 419–424, 2021, doi: 10.24425/amm.2021.135873.
  • [46] M. Shen et al., “Effects of exposure time and printing angle on the curing characteristics and flexural strength of ceramic samples fabricated via digital light processing,” Ceram. Int., vol. 46, no. 15, pp. 24379–24384, 2020, doi: 10.1016/j.ceramint.2020.06.220.
  • [47] M. Hanon, A. Ghaly, L. Zsidai, and S. Klébert, “Tribological characteristics of digital light processing (DLP) 3D printed graphene/resin composite: Influence of graphene presence and process settings,” Mater. Des., vol. 218, pp. 110718-1–110718-17, 2022, doi: 10.1016/j.matdes.2022.110718.
  • [48] Y. Du, T. Hu, J. You, Y. Ye, B. Zhang, B. Bao, M. Li, Y. Liu, Y. Wang, and T. Wang, “Study of falling-down-type DLP 3D printing technology for high-resolution hydroxyapatite scaffolds,” Intl. J. Appl. Ceram. Technol., vol. 19, pp. 268–280, 2022, doi: 10.1111/ijac.13915.
  • [49] A. Bürger, R. van Nieuwenhoven, and I.C. Gebeshuber, “Wings of Death-Mechanical Bactericide by Biomimetics of the Nanopillars on Insect Wings,” abstract for poster presented at the EuroNanoForum 2021, Nanotechnology and Advanced Materials for innovation, competitiveness, and sustainability in Europe, International Iberian Nanotechnology Laboratory, Portugal, 2021.
  • [50] R. Doh, J. Kim, N. Nam, S. Shin, J. Lim, and J. Shim, “Evaluation of Dimensional Changes during Postcuring of a Three-Dimensionally Printed Denture Base According to the Curing Time and the Time of Removal of the Support Structure: An In Vitro Study,” Appl. Sci., vol. 11, no. 21, p. 10000, 2021, doi: 10.3390/app112110000.
  • [51] M. Ugur, H. Kılıç, M. Berkem, and A. Güngör, “Synthesis by UV-curing and characterisation of polyurethane acrylate-lithium salts-based polymer electrolytes in lithium batteries,” Chem. Pap., vol. 68, no. 11, pp. 1561–1572, 2014, doi: 10.2478/s11696-014-0611-1.
  • [52] Q. Gao, H. Li, and X. Zeng, “Preparation and characterization of UV-curable hyperbranched polyurethane acrylate,” J. Coat. Technol. Res., vol. 8, no. 1, pp. 61–66, 2011, doi: 10.1007/s11998-010-9285-y.
  • [53] A. Herrera-González, M. Caldera-Villalobos, A. Pérez-Mondragón, C. Cuevas-Suárez, and J. González-López, “Analysis of Double Bond Conversion of Photopolymerizable Monomers by FTIR–ATR Spectroscopy,” J. Chem. Educ., vol. 96, pp. 1786–1789, 2019, doi: 10.1021/acs.jchemed.8b00659.
  • [54] B. Mojet, S. Ebbesen, and L. Lefferts, “Light at the interface: the potential of attenuated total reflection infrared spectroscopy for understanding heterogeneous catalysis in water,” R. Chem. Soc. Rev., vol. 39, pp. 4643–4655, 2010, doi: 10.1039/c0cs00014k.
  • [55] M. Palenica, “Functional transformation of Fourier-transform mid-infrared spectrum for improving spectral specificity by simple algorithm based on wavelet-like functions,” J. Adv. Res., vol. 14, pp. 53–62, 2018, doi: 10.1016/j.jare.2018.05.009.
  • [56] R. Simi´c, J. Mandal, K. Zhang, and N. Spencer, “Oxygen inhibition of free-radical polymerization is the dominant mechanism behind the “mold effect” on hydrogels,” Soft Matter, vol. 17, pp. 6349-1–6349-10, 2021, doi: 10.1039/d1sm00395j.
  • [57] A. O’Brien and C. Bowman, “Impact of Oxygen on Photopolymerization Kinetics and Polymer Structure,” Macromolecules, vol. 39, no. 7, pp. 2501–2506, 2006, doi: 10.1021/ma051863l.
  • [58] Z. Zhao, X. Mu, J. Wu, H. Qi, and D. Fang, “Effects of oxygen on interfacial strength of incremental forming of materials by photopolymerization,” Extreme Mech. Lett., vol. 9, pp. 108–118, 2016, doi: 10.1016/j.eml.2016.05.012.
  • [59] L. Zhang, C. Wu, K. Jung, Y. Ng, and C. Boyer, “An Oxygen Paradox: Catalytic Use of Oxygen in Radical Photopolymerization,” Angew. Chem. Int. Edit., vol. 58, pp 16811–16814, 2019, doi: 10.1002/anie.201909014.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-178b7ff7-1149-45f1-a58b-43be142347cf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.