Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Attention to greenhouse gases is carried out by reducing CO2 emissions. Emission reduction is achieved using mixed fuels, primarily derived from plant oils. The pertasol-diethyl ether and tamanu oil (PDETO) fuel mixture were tested using a spark ignition engine. The research objective is to obtain fuel specifications and test engine performance using the resulting fuel. Mixed fuels were created from various compositions with codes ranging from BE0 to BE10. Performance testing was conducted using a 110-cc gasoline engine with specific specifications using mixed fuels and compared to commercial gasoline. The research results indicate that engine torque, power, and MeP are higher when using mixed fuels BE0 – BE10 than retail gasoline. The maximum torque that can be achieved is 8.51 NM at 5000 rpm using BE10 mixed fuel, higher than the maximum torque of commercial gasoline, which is 6.81 NM. The highest full power is generated by BE10 fuel, at 7.75 HP at an engine speed of 7000 rpm. The minimum capacity is produced by BE0 fuel, with a power of 6.78 HP at an engine speed of 7000 rpm. Optimal SFC occurs in the BE0 fuel mixture at 7000 rpm engine speed at 0.25 kg/Hp·h. BE10 thermal efficiency reached 31.8%, which is better than commercial gasoline.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
53--63
Opis fizyczny
Bibliogr. 50 poz., rys., tab.
Twórcy
autor
- Institut Teknologi Adhi Tama Surabaya, Jl. Arief Rahman Hakim No.100, Klampis Ngasem, Kec. Sukolilo, Surabaya, Jawa Timur 60117, Indonesia
autor
- Universitas Wijaya Putra, Jl. Pd. Benowo Indah No.1-3, Babat Jerawat, Kec. Pakal, Surabaya, Jawa Timur 60197 Indonesia
autor
- Universitas Negeri Malang, Jl. Cakrawala No.5, Sumbersari, Kec. Lowokwaru, Kota Malang, Jawa Timur 65145, Indonezja Indonesia
autor
- Chung Yuan Christian University, No. 200, Zhongbei Rd, Zhongli District, Taoyuan City, 320 Taiwan
autor
- Institut Teknologi Adhi Tama Surabaya, Jl. Arief Rahman Hakim No.100, Klampis Ngasem, Kec. Sukolilo, Surabaya, Jawa Timur 60117, Indonesia
Bibliografia
- 1. Al-aseebee, Munaf D.F., Ahmed Samir Naje. 2023. The influence of olive oil waste as a biofuel on the exhaust gases of the internal combustion engine, 24(5), 322–28.
- 2. Al-aseebee, Munaf D.F., Ahmed Ketata, Ahmed E. Gomaa, Olfa Moussa, Zied Driss, Mohamed Salah Abid, Ahmed Samir Naje, and Haitham H. Emaish. 2023. Modeling of waste vegetable oil biodiesel for tractor engine utilization, 24(12), 293–303.
- 3. Arbiantara, D., Widodo, E. 2023. Analysis of the effect of bore up variation on engine performance. R.E.M. (Rekayasa Energi Manufaktur) Journal, 8(2).
- 4. Awad, O.I., Mamat, R., Ali, O.M., Sidik, N.A.C., Yusaf, T., Kadirgama, K., Kettner, M. 2018. Alcohol and ether as alternative fuels in spark ignition engine: A review. Renewable and Sustainable Energy Reviews, 82, 2586–2605. https://doi.org/10.1016/J. RSER.2017.09.074
- 5. Awad, O.I., Mamat, R., Ibrahim, T.K., Hammid, A.T., Yusri, I.M., Hamidi, M.A., … Yusop, A.F. 2018. Overview of the oxygenated fuels in spark ignition engine: Environmental and performance. Renewable and Sustainable Energy Reviews, 91, 394408. https://doi.org/10.1016/J.RSER.2018.03.107
- 6. Ayyasamy, T., Balamurugan, K., Duraisamy, S. 2018. Production, performance and emission analysis of Tamanu oil-diesel blends along with biogas in a diesel engine in dual cycle mode. International Journal of Energy Technology and Policy, 14(1), 4–19. https://doi.org/10.1504/IJETP.2018.088279
- 7. Bae, C., Kim, J. 2017. Alternative fuels for internal combustion engines. Proceedings of the Combustion Institute, 36(3), 3389–3413. https://doi.org/10.1016/J.PROCI.2016.09.009
- 8. Balki MK, S.C. 2014a. The effect of compression ratio on the performance, emissions and combustion of an SI (spark ignition) engine fuelled with pure ethanol, methanol, and unleaded gasoline. Renewable Energy, 71, 194–201.
- 9. Balki MK, S.C. 2014b. The effect of different alcohol fuel on the performance, emissions and combustion characteristic of a gasoline engine. Fuel. Renewable Energy, 115, 901–6.
- 10. Budianto, A, Prajitno, D.H., Roesyadi, A., Budhikarjono, K. 2014. HZSM-5 catalyst for cracking palm oil to biodiesel: A comparative study with and without Pt and Pd impregnation. Scientific Study and Research: Chemistry and Chemical Engineering, Biotechnology, Food Industry, 15(1), 81–90.
- 11. Budianto, A., Sumari, S., Pambudi, W.S., Andriani, N. 2019. Uji coba produksi biofuel dari RBD stearin dalam reaktor fixed bed dengan metode cracking. Prosiding Seminar Nasional Sains Dan Teknologi Terapan, 735–740. Sura: LPPM ITATS. Retrieved from https://ejurnal.itats.ac.id/sntekpan/article/ view/646/447
- 12. Budianto, A., Sumari, S., Udyani, K. 2015. Biofuel production from nyamplung oil using catalytic cracking process with Zn-HZSM-5/γ alumina catalyst. ARPN Journal of Engineering and Applied Sciences, 10(22).
- 13. Budianto, A., Sumari, S., Pambudi, W.S., Wahyudi. 2018. Production of various chemicals from nyamplung oil with catalytic cracking process. Indian Journal of Science and Technology, 11(37), 1–7. https://doi.org/10.17485/ijst/2018/v11i37/129866.
- 14. Carlson, N.A., Singh, A., Talmadge, M.S., Jiang, Y., Zaimes, G.G., Li, S., Ramirez-Corredores, M.M. 2023. Economic analysis of the benefits to petroleum refiners for low carbon boosted spark ignition biofuels. Fuel, 334(P1), 126183. https://doi.org/10.1016/j.fuel.2022.126183
- 15. Celik, M.B. 2008. Experimental determination of suitable ethanol–gasoline blend rate at high compression ratio for gasoline engine. Applied Thermal Engineering, 28(5–6), 396–404. https://doi. org/10.1016/J.Applthermaleng.2007.10.028
- 16. Doğan, B., Erol, D., Yaman, H., Kodanli, E. 2017. The effect of ethanol-gasoline blends on performance and exhaust emissions of a spark ignition engine through exergy analysis. Applied Thermal Engineering, 120, 433–443. https://doi.org/10.1016/j. applthermaleng.2017.04.012
- 17. Duarte Souza Alvarenga Santos, N., Rückert Roso, V., Teixeira Malaquias, A.C., Coelho Baêta, J.G. 2021. Internal combustion engines and biofuels: Examining why this robust combination should not be ignored for future sustainable transportation. Renewable and Sustainable Energy Reviews, 148, 111292. https://doi.org/10.1016/J.RSER.2021.111292
- 18. El-adawy, M. 2023. Effects of diesel-biodiesel fuel blends doped with zinc oxide nanoparticles on performance and combustion attributes of a diesel engine. Alexandria Engineering Journal, 80(May), 269–281. https://doi.org/10.1016/j.aej.2023.08.060
- 19. Elfasakhany, A. 2015. Investigations on the effects of ethanol-methanol-gasoline blends in a spark-ignition engine: Performance and emissions analysis. Engineering Science and Technology, an International Journal, 18(4), 713–719. https://doi.org/10.1016/J.JESTCH.2015.05.003
- 20. Gardyński, L., Kałdonek, J. 2020. Research on lubrication properties of selected raw plant and animal materials. Transport, 35(1), 20–25. https://doi. org/10.3846/transport.2020.11961
- 21. Gardyński, L., Kałdonek, J., Caban, J. 2020. Testing of lubricating properties of mixtures of diesel and rme biofuels with the addition of linoleic acid. Archives of Automotive Engineering, 87(1), 57–66. https://doi.org/10.14669/Am.Vol87.Art5
- 22. Górski, K., Smigins, R., Matijošius, J., Rimkus, A., Longwic, R. 2022. Physicochemical properties of diethyl ether – sunflower oil blends and their impact on diesel engine emissions. Energies, 15(11). https://doi.org/10.3390/en15114133
- 23. Hajj, D. S., Rp, D. A., Budianto, A. 2019. Pembuatan biofuel dengan proses perengkahan dari palm fatty acid distillate (PFAD) menggunakan katalis CaO. 607–614.
- 24. Hasan, A.O., Al-Rawashdeh, H., Al-Muhtaseb, A.H., Abu-jrai, A., Ahmad, R., Zeaiter, J. 2018. Impact of changing combustion chamber geometry on emissions, and combustion characteristics of a single cylinder SI (spark ignition) engine fueled with ethanol/gasoline blends. Fuel, 231, 197–203. https://doi.org/10.1016/j.fuel.2018.05.045
- 25. Hsieh, W.D., Chen, R.H., Wu, T.L., Lin, T.H. 2002. Engine performance and pollutant emission of an SI engine using ethanol-gasoline blended fuels. Atmospheric Environment, 36(3), 403–410. https://doi.org/10.1016/S1352-2310(01)00508-8
- 26. Iodice, P., Langella, G., Amoresano, A. 2018. Ethanol in gasoline fuel blends: Effect on fuel consumption and engine out emissions of SI engines in cold operating conditions. Applied Thermal Engineering, 130, 1081–1089. https://doi.org/10.1016/j. applthermaleng.2017.11.090
- 27. Issayev, G., Mani Sarathy, S., Farooq, A. 2020. Autoignition of diethyl ether and a diethyl ether/ethanol blend. Fuel, 279, 118553. https://doi.org/10.1016/J. FUEL.2020.118553
- 28. Karthik, K., Ramesh, T., Sankarganesh, P., Vinoth Kanna, I. 2020. Performance and emission analysis of tamanu oil–diesel blends in CI engine. https://doi. org/10.1080/01430750.2020.1783353.
- 29. Khairil, Rizki, A., Iskandar, Jalaluddin, Silitonga, A.S., Masjuki, H.H., Mahlia, T.M.I. 2018. The potential biodiesel production from Cerbera odollam oil (Bintaro) in Aceh . MATEC Web of Conferences, 159, 01034. https://doi.org/10.1051/ matecconf/201815901034
- 30. Kuntari, K., Barkasih, S. 2018. Pemanfaatan sumber daya alam minasolm, pertasol ca dan pertasol cb sebagai pasta cap zat warna dispersi pada kain poliester. Jurnal Sains Materi Indonesia, 7(3), 52–61. https://doi.org/10.17146/JSMI.2006.7.3.4842
- 31. Lappas, A.A., Bezergianni, S., Vasalos, I.A. 2019. Production of biofuels via co-processing in conventional refining processes. Catalysis Today, 145(1–2), 55–62.
- 32. Li, Y., Gong, J., Deng, Y., Yuan, W., Fu, J., Zhang, B. 2017. Experimental comparative study on combustion, performance and emissions characteristics of methanol, ethanol and butanol in a spark ignition engine. Applied Thermal Engineering, 115, 53–63. https://doi.org/10.1016/j. applthermaleng.2016.12.037
- 33. Manikandan, K., Walle, M. 2013. The Effect of gasoline-ethanol blends and compression ratio on SI engine performance and exhaust emissions. International Journal of Engineering Research & Technology, 2(10).
- 34. Mirzayanti, Y.W., Kurniawansyah, F., Prajitno, D.H., Roesyadi, A. 2018. Zn-Mo/HZSM-5 catalyst for gasoil range hydrocarbon production by catalytic hydrocracking of ceiba pentandra oil. Bulletin of Chemical Reaction Engineering & Catalysis, 13(1), 136–143. https://doi.org/10.9767/ bcrec.13.1.1354.136-143
- 35. Parthasarathy, M., Ramkumar, S., Isaac JoshuaRamesh Lalvani, J., Elumalai, P.V., Dhinesh, B., Krishnamoorthy, R., Thiyagarajan, S. 2020. Performance analysis of HCCI engine powered by tamanu methyl ester with various inlet air temperature and exhaust gas recirculation ratios. Fuel, 282, 118833. https://doi.org/10.1016/J.FUEL.2020.118833
- 36. Rahim, R., Mamat, R., Taib, M.Y., Abdullah, A.A. 2012. Influence of fuel temperature on diesel engine performance operating with biodiesel blend. Journal of Mechanical Engineering and Sciences (JMES), 2(June), 226–236.
- 37. Ro, J.W., Zhang, Y., Kendall, A. 2023. Developing guidelines for waste designation of biofuel feedstocks in carbon footprints and life cycle assessment. Sustainable Production and Consumption, 37, 320–330. https://doi.org/10.1016/j.spc.2023.03.009
- 38. Robert, M., Martins, J., Popescu, F., Uzuneanu, K., Ion, I.V, Goncalves, M., … Brito, F. P. 2023. Turpentine as an Additive for Diesel Engines : Experimental Study on Pollutant Emissions and Engine Performance. Energies, 16(5150), 1–18.
- 39. Saikrishnan, V., Karthikeyan, A., Jayaprabakar, J. 2017. Analysis of ethanol blends on spark ignition engines, 39(2), 103–107. https://doi.org/10.1080/0 1430750.2016.1269678.
- 40. Shyurova, NA., Dubrovin V.V., Narushev V.B. 2020. Biofuel as an alternative energy source for the automobile industry: The experience of the lower Volga Region (Russia). 21(6), 29–35.
- 41. Siswanto, E., Darmadi, D.B., Widodo, A.S., Talice, M. 2023. Case Studies in Thermal Engineering Enhancement of combustion performances and reduction of combustible species emission using an additional of combustion-reaction of engine. Case Studies in Thermal Engineering, 49(May), 103328. https://doi.org/10.1016/j.csite.2023.103328
- 42. Sumari, S., Fajaroh, F., Bagus Suryadharma, I., Santoso, A., Budianto, A. 2019. Zeolite impregnated with Ag as catalysts for glycerol conversion to ethanol assisted by ultrasonic. IOP Conference Series: Materials Science and Engineering, 515(1). https:// doi.org/10.1088/1757-899X/515/1/012075
- 43. Sumari, S., Fajaroh, F., Yahmin, Sholihah, N., Santoso, A., Budianto, A. 2019. Effect of temperature synthesis on structural behaviours of NaY zeolite using local sand as a silica source. IOP Conference Series: Materials Science and Engineering, 515(1). https://doi.org/10.1088/1757-899X/515/1/012036
- 44. Uyumaz, A. 2023. Experimental Research with Diethyl Ether on Engine Performance and Emissions in a Spark Ignition Engine, 7, 167–174.
- 45. Wasilewski, J., Zając, G., Szyszlak-Bargłowicz, J., Kuranc, A. 2022. Evaluation of greenhouse gas emission levels during the combustion of selected types of agricultural biomass. Energies, 15(19). https://doi.org/10.3390/en15197335
- 46. Xuan, N., Lim, O. 2019. The effects of combustion duration on residual gas, effective release energy, engine power, and engine emissions characteristics of the motorcycle engine. Applied Energy, 248(April), 54–63. https://doi.org/10.1016/j. apenergy.2019.04.075
- 47. Yadav, A.K., Dewangan, A., Mallick, A. 2018. Effect of n-butanol and diethyl ether on performance and emission characteristics of a diesel engine fueled with diesel–pongamia biodiesel blend. Journal of Energy Engineering, 144(6), 04018062. https:// doi.org/10.1061/(ASCE)EY.1943-7897.0000570
- 48. Yang, S., Sun, P., Feng, J., Cui, K., Wang, C. 2023. Case studies in thermal engineering combustion and emission characteristics of dimethyl ether/ gasoline DFSI engine under different excess air coefficients. 49(May). https://doi.org/10.1016/j.csite.2023.103342
- 49. Yesilyurt, M.K., Aydin, M. 2020. Experimental investigation on the performance, combustion, and exhaust emission characteristics of a compressionignition engine fueled with cottonseed oil biodiesel/ diethyl ether/diesel fuel blends. Energy Conversion and Management, 205, 112355. https://doi.org/10.1016/J.ENCONMAN.2019.112355
- 50. Zaharin, M.S.M., Abdullah, N.R., Masjuki, H.H., Ali, O.M., Najafi, G., Yusaf, T. 2018. Evaluation on physicochemical properties of iso-butanol additives in ethanol-gasoline blend on performance and emission characteristics of a spark-ignition engine. Applied Thermal Engineering, 144. https://doi.org/10.1016/j.applthermaleng.2018.08.057
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1782d660-857a-4842-96ec-c9b0e8efaf69