PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Odzysk wanadu z odpadów przemysłowych - przegląd literatury

Identyfikatory
Warianty tytułu
EN
Vanadium recovery from industrial waste - review
Języki publikacji
PL
Abstrakty
PL
Wanad należy do grupy metali nieżelaznych, stanowiący jeden z podstawowych dodatków do stopów z przeznaczeniem na narzędzia. Obecność wanadu w stopach, znacząco poprawia właściwości mechaniczne. Niestety jego wysoka cena powoduje, iż na rynku pojawiają się fałszywe stopy, które rzekomo mają posiadać wanad lub jego zawartość jest zaniżona względem optymalnych parametrów. Ze względu na jego wysoką cenę, ograniczone źródła naturalne oraz jego toksyczność, koniecznym jest rozsądne i przemyślane zarządzanie zasobami, oraz odpadami zawierającymi ten metal oraz jego sole. W pracy przedstawiono przegląd literatury na temat recyklingu wanadu i jego źródeł antropogenicznych.
EN
Vanadium belongs to the group of non-ferrous metals, which is one of the basic additions to alloys for tools. The presence of vanadium in the alloys, significantly improves mechanical properties. Unfortunately, its high price results in the appearance of false of alloys on the market that allegedly have vanadium. Due to its high price, limited natural sources and its toxicity, it is necessary to have a reasonable and well thought-out management of resources and waste containing this metal and its salts. The following paper presents an overview of the literature on vanadium recycling from its anthropogenic sources.
Rocznik
Strony
17--20
Opis fizyczny
Bibliogr. 44 poz., tab.
Twórcy
  • AGH Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie, Wydział Metali Nieżelaznych , Al. A. Mickiewicza 30, 30-059 Kraków
  • AGH Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie, Wydział Metali Nieżelaznych , Al. A. Mickiewicza 30, 30-059 Kraków
  • Politechnika Rzeszowska, im. Ignacego Łukasiewicza, Wydział Budowy Maszyn i Lotnictwa, Al. Powstańców Warszawy 8, 35-959 Rzeszów
Bibliografia
  • [1] Abdel-Latif, M. A. 2002. “Recovery of vanadium and nickel from petroleum fly ash." Minerals Engineering 15 (11 SUPPL. 1): 953-961.
  • [2] Akita, S., T. Maeda, H. Takeuchi. 1995. “Recovery of vanadium and nickel in fly ash from heavy oil." Journal of Chemical Technology & Biotechnology 62 (4): 345-350.
  • [3] Amer, A. M. 2002. “Processing of Egyptian boiler-ash for extraction of vanadium and nickel." Waste Management 22 (5): 515- 520.
  • [4] Bryans, Declan, Véronique Amstutz, Hubert H. Girault, and Léonard E. A. Berlouis. 2018. “Characterisation of a 200 kW/400 kWh Vanadium Redox Flow Battery." Batteries 4 (4): 54.
  • [5] Etsell, T. H. 2004. “Alternative reagents for roasting Suncor oil sands fly ash AU - Holloway, P. C." Mineral Processing and Extractive Metallurgy 113 (3):153-160.
  • [6] Etsell, T. H. 2004. “ROASTING OF SYNCRUDE OIL SANDS FLY ASH AU - HOLLOWAY, P.C." Canadian Metallurgical Quarterly 43 (4): 535-544.
  • [7] Etsell, T. H. 2006. “PROCESS FOR THE COMPLETE UTILIZATION OF OIL SANDS FLY ASH AU - HOLLOWAY, P.C." Canadian Metallurgical Quarterly 45 (1): 25-32.
  • [8] Frost, Ray L., Dermot A. Henry, Matt L. Weier, Wayde Martens. 2006. “Raman spectroscopy of three polymorphs of BiVO4: clinobisvanite, dreyerite and pucherite, with comparisons to (VO4)3-bearing minerals: namibite, pottsite and schumacherite." Journal of Raman Spectroscopy 37 (7): 722-732.
  • [9] Habashi, Fathi. 1997. Handbook of extractive metallurgy. 4 vols: Wiley-VCH.
  • [10] He, Dongsheng, Qiming Feng, Guofan Zhang, Leming Ou, and Yiping Lu. 2007. “An environmentally-friendly technology of vanadium extraction from stone coal." Minerals Engineering 20 (12):1184-1186.
  • [11] Holloway, P. C., T. H. Etsell. 2004. “Salt roasting of suncor oil sands fly ash." Metallurgical and Materials Transactions B 35 (6): 1051- 1058.
  • [12] Holloway, P. C., T. H. Etsell, C. F. Bunnell. 2005. “Atmospheric leaching of oil sands fly ash from Syncrude and Suncor." Mining, Metallurgy & Exploration 22 (3):145-152.
  • [13] http://vanitec.org/vanadium/making-vanadium (dostęp. 03.04.2019).
  • [14] https://data.worldbank.org (dostęp: 10.02.2019).
  • [15] https://www.vanadiumprice.com/ (dostęp: 03.04.2019).
  • [16] Krulls, G. E. 1982. “Gas Turbine Vanadium Inhibition." ASME 81- GT-187.
  • [17] Kwolek, P., T. Tokarski. 2012. “Nowa metoda syntezy ortowanadanu bizmutu jako potencjalnego materiału do zastosowań optoelektronicznych." Rudy i Metale Nieżelazne 57: 828-833.
  • [18] Lee, Jae-chun, and Banshi Dhar Pandey. 2012. “Bio-processing of solid wastes and secondary resources for metal extraction - A review." Waste Management 32(1): 3-18.
  • [19] Leiviskä, Tiina, Auli Salakka, Juha Tanskanen. 2015. “Removal of nickel and vanadium from ammoniacal industrial wastewater by ion exchange and adsorption on activated carbon AU - Keränen, Anni." Desalination and Water Treatment 53 (10): 2645-2654.
  • [20] Long, Sisi, Qiming Feng, Guofan Zhang, Dongsheng He. 2014. “Recovery of vanadium from alkaline leaching solution from roasted stone coal." ScienceAsia 40 (1): 69-72.
  • [21] Malkiewicz, T. 1971. Metaloznawstwo stopów żelaza. Warszawa- -Kraków: PWN.
  • [22] Marczenko, Zygmunt, and Maria Balcerzak. 2000. “Separation, Preconcentration and Spectrophotometry in Inorganic Analysis." W Analytical Spectroscopy Library. 474-482. New York: Elsevier.
  • [23] Mousa, Khalid M., Fouad A. A. Al-saady, May E. Mahmood. 2011. “Nickel recovery from residue of heavy oil using nitric acid." J. of Petroleum Research & Studies 3: 87-96.
  • [24] Mthombeni, Nomcebo H., Sandrine Mbakop, Aoyi Ochieng, Maurice S. Onyango. 2016. “Vanadium (V) adsorption isotherms and kinetics using polypyrrole coated magnetized natural zeolite." Journal of the Taiwan Institute of Chemical Engineers 66:172-180.
  • [25] Navarro, R., J. Guzman, I. Saucedo, J. Revilla, E. Guibal. 2007. “Vanadium recovery from oil fly ash by leaching, precipitation and solvent extraction processes." Waste Management 27 (3):425-438.
  • [26] Park, Yiseul, Kenneth J. McDonald, Kyoung-Shin Choi. 2013. “Progress in bismuth vanadate photoanodes for use in solar water oxidation." Chemical Society Reviews 42 (6):2321-2337.
  • [27] Qurashi, M. M., and W. H. Barnes. 1953. “The structure of pucherite, BiVO4." American Mineralogist 38 (5-6):489-500.
  • [28] Seggiani, M., S. Vitolo, M. Pastorelli, P. Ghetti. 2007. “Combustion reactivity of different oil-fired fly ashes as received and leached." Fuel 86 (12-13):1885-1891.
  • [29] Seggiani, Maurizia, Sandra Vitolo, Salvatore D’Antone. 2006. “Recovery of nickel from Orimulsion fly ash by iminodiacetic acid chelating resin." Hydrometallurgy 81 (1): 9-14.
  • [30] Stas, J., A. Dahdouh, O. Al-chayah. 2007. “Recovery of vanadium, nickel and molybdenum from fly ash of heavy oil-fired electrical power station." Periodica Polytechnica: Chemical Engineering 51 (2):67-70.
  • [31] Strobel, Reto, Hans Joachim Metz, Sotiris E. Pratsinis. 2008. “Brilliant Yellow, Transparent Pure, and SiO2-Coated BiVO4 Nanoparticles Made in Flames." Chemistry of Materials 20 (20): 6346-6351.
  • [32] Survey, U.S. Geological. 2018. Minerals Yearbook, volume I, Metals and Minerals. In Minerals Yearbook. Reston, VA.
  • [33] Tokuyama, H., S. Nii, F. Kawaizumi, K. Takahashi. 2003. “Process development for recovery of vanadium and nickel from heavy oil fly ash by leaching and ion exchange." Separation Science and Technology 38 (6): 1329-1344.
  • [34] Tsai, S. L., M. S. Tsai. 1998. “ A study of the extraction of vanadium and nickel in oil-fired fly ash." Resources, Conservation and Recycling 22 (3-4):163-176.
  • [35] Tsygankova, M. V., V. I. Bukin, E. I. Lysakova, A. G. Smirnova, A. M. Reznik. 2011. “The recovery of vanadium from ash obtained during the combustion of fuel oil at thermal power stations." Russian Journal of Non-Ferrous Metals 52 (1): 19-23.
  • [36] Tücks, A., H. P. Beck. 2005. “The photochromic effect of bismuth vanadate pigments. Part I: Synthesis, characterization and lightfastness of pigment coatings." Journal of Solid State Chemistry 178 (4): 1145-1156.
  • [37] Uhrig, Martin, Sebastian Koenig, Michael R. Suriyah, Thomas Leibfried. 2016. “Lithium-based vs. Vanadium Redox Flow Batteries - A Comparison for Home Storage Systems." Energy Procedia 99: 35-43.
  • [38] Urban, Joanna, Jolanta Antonowicz-Juchniewicz, and Ryszard Andrzejak. 2001. “WANAD - ZAGROŻENIA I NADZIEJE." Medycyna Pracy 52 (2): 125-133.
  • [39] Vitolo, S., M. Seggiani, S. Filippi, C. Brocchini. 2000. “Recovery of vanadium from heavy oil and Orimulsion fly ashes." Hydrometallurgy 57 (2):141-149.
  • [40] Waring, J. L., R. S. Roth. 1963. “Synthesis And Stability Of Bismutotantalite, Stibiotantalite And Chemically Similar AB04 Compounds." American Mineralogist 48 (11-12): 1348-1356.
  • [41] Wing, R. G., I. R. McGill. 1981. “The Protection of Gas Turbine Blades. A PLATINUM ALUMINIDE DIFFUSION COATING." Platinum Metals Rev. 25 (3): 94-105.
  • [42] Xiao, Yanping, Heikki Jalkanen, Yongxiang Yang, Cyril R. Mambote, and Rob Boom. 2010. “Ferrovanadium production from petroleum fly ash and BOF flue dust." Minerals Engineering 23 (14): 1155-1157.
  • [43] Xiao, Yanping, C. R Mambote, Heikki Jalkanen, Yongxiang Yang, and R. Boom. 2010. Vanadium recovery as FeV from petroleum fly ash.
  • [44] Zhang, Lingfan, Xin Liu, Wei Xia, Wenqing Zhang. 2014. “Preparation and characterization of chitosan-zirconium(IV) composite for adsorption of vanadium(V)." International Journal of Biological Macromolecules 64:155-161.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1780b56f-7363-4547-94a7-7313ec56cdfc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.