PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical analysis of SiGeSn/GeSn interband quantum well infrared photodetector

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, detailed theoretical investigation on the frequency response and responsivity of a strain bal-anced SiGeSn/GeSn quantum well infrared photodetector (QWIP) is made. Rate equation and continuity equation in the well are solved simultaneously to obtain photo generated current. Quantum mechanical carrier transport like carrier capture in QW, escape of carrier from the well due to thermionic emission and tunneling are considered in this calculation. Impact of Sn composition in the GeSn well on the frequency response, bandwidth and responsivity are studied. Results show that Sn concentration in the GeSn active layer and applied bias have important role on the performance of the device. Significant bandwidth is obtained at low reverse bias voltage, e.g., 200 GHz is obtained at 0.28 V bias for a single Ge0.83 Sn0.17 layer. Whereas, the maximum responsivity is of 8.6 mA/W at 0.5 V bias for the same structure. However, this can be enhanced by using MQW structure.
Słowa kluczowe
Twórcy
autor
  • Dept. of Electronics and Communication Engineering, Vaagdevi College of Engineering (Autonomous), Bollikunta, Warangal, Telengana, India
  • Dept. of Electronics Engineering, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad, Jharkhand, India
autor
  • Dept. of Electronics Engineering, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad, Jharkhand, India
autor
  • Dept. of Electronics Engineering, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad, Jharkhand, India
Bibliografia
  • [1] V. Gueriaux, et al., Quantum well infrared photodetectors:present and future, Opt. Eng. 50 (2011) 061013.
  • [2] A. Rogalski, Infrared detectors: an overview, Infrared Phys. Technol. 43 (2002) 187–210.
  • [3] C. Downs, T.E. Vandervelde, Progress in infrared photodetectors since 2000, Sensors 13 (2013) 5054–5098.
  • [4] K.W. Ang, et al., Silicon photonics technologies for monolithic electronic-photonic integrated circuit (EPIC) applications: current progress and future outlook, Proc. of IEEE International Electron Devices Meeting (IEDM) (2009) 1–4.
  • [5] G.Q. Lo, et al., Silicon photonics technologies for monolithic electronic-photonic integrated circuit, ECS Trans. 28 (2010) 3–11.
  • [6] R. Soref, Mid-infrared photonics in silicon and germanium, Nat. Photonics 4 (2010) 495–497.
  • [7] G. Roelkens, et al., Silicon-based photonic integration beyond the telecommunication wavelength range, IEEE J. Sel. Top. Quantum Electr. 20 (July/August (4)) (2014) 394–404.
  • [8] C.H.L. Goodman, Direct-gap group IV semiconductors based on tin, IEEE Proc. I: Solid State and Electron Devices 129 (1982) 189–192.
  • [9] R.A. Soref, C.H. Perry, Predicted bandgap of the new semiconductor SiGeSn, J. Appl. Phys. 539 (1991) 539, http://dx.doi.org/10.1063/1.347704.
  • [10] J. Kouvetakis, J. Menedez, A.V.G. Chizmeshya, Tin based group IV semiconductors: new platforms for opto and micro electronics and silicon, Annu. Rev. Mater. Res. 36 (2006) 497–554.
  • [11] A. Gassenq, et al., GeSn/Ge heterostructure short-wave infrared photodetectors on silicon, Opt. Express 20 (2012) 27297–27303.
  • [12] J. Werner, et al., Germanium–tin p-i-n photodetecors integrated on integrated on silicon grown by molecular beam epitaxy, Appl. Phys. Lett. 98 (6) (2011), 061108.
  • [13] J. Zheng, et al., GeSn p i n photodetectors with GeSn layer grown by magnetron sputtering epitaxy, Appl. Phys. Lett. 108 (3) (2016), 033503.
  • [14] E. Daukes, K. Kawaguchi, J. Zhang, Strain-balanced criteria for multiple quantum well structures and its signature in X-ray rocking curves, Crystal Growth Des. 2 (2002) 287–292.
  • [15] P. Pareek, M.K. Das, Theoretical analysis of direct transition in SiGeSn/GeSnstrain balanced QWIP, Opt. Quantum Electr. 228 (2016) 1–11.
  • [16] K.M.S.V. Bandara, B.F. Levine, R.E. Leibenguth, M.T. Asom, Optical and transport properties of single quantum well infrared photodetectors, J. Appl. Phys. 74 (1993) 1826.
  • [17] V. Ryzhii, High-frequency performance of single quantum well infrared photodetectors at high power densities, IEEE Trans. Electron Devices 45 (8) (1998) 1797–1803.
  • [18] V. Ryzhii, Impact of transit time and capture effects on high-frequency performance of multiple quantum well infrared photodetectors, IEEE Trans. Electron Devices 45 (1) (1998) 293–298.
  • [19] B.F. Levine, Quantum well infrared photodetectors, J. Appl. Phys 74 (1993) R1.
  • [20] N. Yahyaoui, N. Sfina, J.-L. Lazzari, A. Bournel, M. Said, Band engineering and absorption spectra in compressively strained Ge0.92Sn0.08/Ge (001) double quantum well for infrared photodetection, Phys. Status Solidi C 11 (2014) 1561–1565.
  • [21] N. Yahyaoui, et al., Performance evaluation of high-detectivity p-i-n infrared photodetector based on compressively-strained Ge0.964Sn0.036/Ge multiple quantum wells by quantum modeling, Semicond. Sci. Technol. 30 (085016) (2015) 8.
  • [22] R. Soref, Emerging SiGeSn integrated-photonics technology, in: 2016 IEEE Photonics Society Summer Topical Meeting Series (SUM), CA, 2016, pp. 100–101, http://dx.doi.org/10.1109/PHOSST.2016.7548747.
  • [23] G.E. Chang, S.W. Chang, S.L. Chuang, Strain-balanced GezSn1-z-SixGeySn1-x-y multiple-quantum-well lasers, IEEE J. Quantum Electr. 46 (2010) 1813–1820.
  • [24] Seyed Amir Ghetmiri, et al., Study of a SiGeSn/GeSn/SiGeSn structure toward direct bandgap type-I quantum well for all group-IV optoelectronics, Opt. Lett. 42 (3) (2017) 387–390.
  • [25] Wei Dou, et al., Structural and optical characteristics of GeSn quantum wells for silicon-based mid-infrared optoelectronic applications, J. Electr. Mater. 45 (12) (2016) 6265–6272, http://dx.doi.org/10.1007/s11664-016-5031-2.
  • [26] N.R. Das, M.J. Deen, Calculating the photocurrent and transit-time-limited bandwidth of a heterostructure p-i-n photo-detector, IEEE J. Quantum Electr. 37 (12) (2001) 1574–1587.
  • [27] S.M. Sze, Physics of Semiconductor Devices, Wiley-Interscience, USA, 1969.
  • [28] S.D. Gunapala, D.R. Rhiger, C. Jagadish, Advances in Infrared Photodetectors, vol. 84, 1st Edition, 2011.
  • [29] H.M. Khalil, N. Balkan, Carrier trapping and escape times in p-i-n GaInNAs MQW structures, Nanoscale Res. Lett. 9 (2014) 1–4.
  • [30] C.G. Van de Walle, Band lineups and deformation potentials in the model-solid theory, Phys. Rev. B 39 (1989) 1871–1883.
  • [31] M.K. Das, N.R. Das, Calculating the responsivity of a resonant cavity enhanced Si1-xGex/Si multiple quantum well photodetector, J. Appl. Phys. 105 (2009) 1–8, 093118.
  • [32] G. Zhou, P. Runge, Modeling of multiple-quantum-well p-i-n photodiodes, IEEE J. Quantum Electr. 50 (April (4)) (2014) 220–227.
  • [33] J. Mathews, Investigation of Light Absorption and Emission in Ge and GeSn Films Grown on Si Substrates, Arizona State University, 2011, PhD Dissertation.
  • [34] L. Thibaudeau, P. Bois, J.Y. Duboz, A self consistent model for quantum well infrared photodetectors, J. Appl. Phys. 79 (1996) 446, http://dx.doi.org/10.1063/1.362712.
  • [35] M.K. Das, N.R. Das, Effect of Ge composition on the frequency response of a Si/Si1-yGey P-i-N photodetctor, Opt. Eng. 45 (12) (2006) 1–6, 124001.
  • [36] J.M. Senior, Optical Fiber Communication, Prentice Hall, London, 1985.
  • [37] P. Bhattacharya, Semiconductor Optoelectronic Devices, Pearson Education Inc., New Jersey, 1994.
  • [38] S.W. Chang, S.L. Chuang, Theory of optical gain of Ge-SixGeySn1-x-y quantum-well lasers, IEEE J. Quantum Electr. 43 (March (3)) (2007) 249–256.
  • [39] Yahyaoui, N. Sfina, J.L. Lazzari, A. Bournel, M. Said, Wave function engineering and absorption spectra in Si0. 16Ge0. 84/Ge0. 94Sn0. 06/Si0. 16Ge0. 84 strained on relaxed Si0. 10Ge0. 90 type I quantum well, J. Appl. Phys. 115 (2014) 1–9, 033109.
  • [40] E. Kasper, et al., Growth of silicon based germanium tin alloys, Thin Solid Films 520 (2012) 3195–3200.
  • [41] R. Chen, et al., Material characterization of high Sn-content, compressively-strained GeSn epitaxial films after rapid thermal processing, J. Crystal Growth 365 (2013) 29–34.
  • [42] M. Oehme, et al., GeSn/Ge multiquantum well photodetectors on Si substrates, Opt. Lett. 39 (2014) 4711–4714.
  • [43] H. Cong, et al., Silicon based GeSn p-i-n photodetector for SWIR detection, IEEE Photonics J. 8 (October (5)) (2016) 1–6.
  • [44] H.S. Ma˛ czko, R. Kudrawiec, M. Gladysiewicz, Material gain engineering in GeSn/Ge quantum wells integrated with an Si platform, Sci. Rep. 6 (2016), http://dx.doi.org/10.1038/srep34082.
  • [45] M. Oehme, et al., GeSn-on-Si normal incidence photodetectors with bandwidths more than 40 GHz, Opt. Express 22 (2014) 839–846.
  • [46] P. Rauter, et al., SiGe quantum well infrared photodetectors on pseudosubstrate, Appl. Phys. Lett. 94 (081115) (2009), http://dx.doi.org/10.1063/1.3089817.
  • [47] Chia-Ho Tsai, Guo-En Chang, GeSn/Ge quantum well photodetectors for short-wave infrared photodetection: experiments and modeling, 16 May 2017, in: Proc. SPIE 10231, Optical Sensors, 102310J, 2017, http://dx.doi.org/10.1117/12.2265185.
  • [48] G.E. Chang, et al., Design and modeling of GeSn-based heterojunction phototransistors for communication applications, IEEE J. Sel. Top. Quantum Electr. 22 (Nov.-Dec) (2016) 425–433.
Uwagi
1. This work is partly supported by the Center of Excellence in Renewable Energy, project under MHRD, Govt. of India (F. No. 5-6/2013-TS-VII) at Indian Institute of Technology (Indian School of Mines) Dhanbad, India.
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-176236b3-d654-487e-b5aa-1dbee01cce86
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.