Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Conference Proceedings of the 4th Asia Pacific Luminescence and Electron Spin Resonance Dating Conference Nov 23rd-25th, 2015, Adelaide, Australia.
Języki publikacji
Abstrakty
Thermoluminescence (TL) and isothermal thermoluminescence (ITL) signals from K-feldspar were studied. The signals from K-feldspar have provided multiple thermometers for thermochronological study. Protocols of multiple aliquot (MA) additive-dose (A) and regenerative-dose (R) have been applied and tested for equivalent dose (De) determinations using TL and ITL signals (MAA-TL, MAR-TL, MAA-ITL and MAR-ITL). Single aliquot regenerative-dose (SAR) protocol was only applied for De determination using ITL signals (SAR-ITL). A 50–60°C translation of heating temperature was necessary for the ITL De values to agree with TL De values. Based on the experiment results and merits-drawbacks comparison of the five tested protocols, the MAR-TL and SAR-ITL are favorable because of their efficiency and accuracy in De determinations. These two protocols were further applied to the samples from the Nujiang River valley and both explicitly demonstrated the thermal history of the samples. They are suitable for K-feldspar thermochronology study. They, as a parallelism of the previous studies of quartz TL and ITL signals, can provide multiple measures for a rock sample with the same thermal history in geo-thermochronological studies.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
112--120
Opis fizyczny
Bibliogr. 20 poz., rys.
Twórcy
autor
- Department of Earth Sciences, the University of Hong Kong, Pokfulam Road, Hong Kong, China
autor
- Department of Earth Sciences, the University of Hong Kong, Pokfulam Road, Hong Kong, China
Bibliografia
- 1. Aitken MJ, 1985. Thermoluminescence Dating. Academic Press Inc, London.
- 2. Aitken MJ, Tite MS and Reid J, 1964. Thermoluminescent dating of ancient ceramics. Nature 202: 1032–1033, DOI 10.1038/2021032b0.
- 3. Bowen R, 1994. Carbon-14 Dating Isotopes in the Earth Sciences (pp. 247–263). Springer.
- 4. Dunai TJ, 2010. Cosmogenic Nuclides: Principles, concepts and applications in the Earth surface sciences. Cambridge University Press.
- 5. Gong ZJ, Li SH and Li B, 2014. The evolution of a terrace sequence along the Manas River in the northern foreland basin of Tian Shan, China, as inferred from optical dating. Geomorphology 213: 201–212, DOI 10.1016/j.geomorph.2014.01.009.
- 6. Guralnik B, Ankjærgaard C, Jain M, Murray AS, Müller A, Wälle M, Lowick SE, Preusser F, Rhodes EJ, Wu TS and Mathew G, 2015. OSL-thermochronometry using bedrock quartz: A note of caution. Quaternary Geochronology 25: 37–48, DOI 10.1016/j.quageo.2014.09.001.
- 7. Herman F, Rhodes EJ, Braun J and Heiniger L, 2010. Uniform erosion rates and relief amplitude during glacial cycles in the Southern Alps of New Zealand, as revealed from OSL-thermochronology. Earth and Planetary Science Letters 297(1): 183–189, DOI 10.1016/j.epsl.2010.06.019.
- 8. Jain M, Bøtter-Jensen L, Murray AS, Denby PM, Tsukamoto S, and Gibling MR, 2005. Revisiting TL: dose measurement beyond the OSL range using SAR. Ancient TL 23: 9–24.
- 9. Johnson NM, 1966. Geothermometery from the thermoluminescence of contact-metamorphosedlimestone. Journal of Geology 74: 607–619.
- 10. King GE, Herman F, Lambert R, Valla PG and Guralnik B, 2016. Multi-OSL-thermochronometry of feldspar. Quaternary Geochronology 33: 76–87, DOI 10.1016/j.quageo.2016.01.004.
- 11. Li B and Li SH, 2011. Luminescence dating of K-feldspar from sediments: A protocol without anomalous fading correction. Quaternary Geochronology 6: 468–479, DOI 10.1016/j.quageo.2011.05.001.
- 12. Li B and Li SH, 2012. Determining the cooling age using luminescence-thermochronology. Tectonophysics 580: 242–248, DOI 10.1016/j.tecto.2012.09.023.
- 13. Li SH, Chen YY, Li B, Sun JM and Yang LR, 2007. OSL dating of sediments from deserts in northern China. Quaternary Geochronology 2: 23–28, DOI 10.1016/j.quageo.2006.05.034.
- 14. Martin L, Incerti S and Mercier N, 2016. DosiVox: Implementing Geant 4-based software for dosimetry simulations relevant to luminescence and ESR dating techniques. Ancient TL 33(1): 1–10.
- 15. Martin L, Mercier N, Incerti S, Lefrais Y, Pecheyran C, Guérin G, Jarry M, Bruxelles L, Bon F and Pallier C, 2015. Dosimetric study of sediments at the beta dose rate scale: Characterization and modelization with the DosiVox software. Radiation Measurements81: 134–141, DOI 10.1016/j.radmeas.2015.02.008.
- 16. Murray AS and Wintle AG, 2000. Application of the single-aliquot regenerative-dose protocol to the 375 C quartz TL signal. Radiation Measurements 32(5): 579–583, DOI 10.1016/S1350-4487(00)00089-5.
- 17. Prokein J and Wagner GA, 1994. Analysis of thermoluminescent glow peaks in quartz derived from the KTB-drill hole. Radiation Measurements 23(1): 85–94, DOI 10.1016/1350-4487(94)90026-4.
- 18. Qin J, Chen J, Valla PG, Herman F and Li K, 2015. Estimating rock cooling rates by using multiple luminescence thermochronometers. Radiation Measurements 81: 85–91, DOI 10.1016/j.radmeas.2015.08.010.
- 19. Sarkar SD, Mathew G, Pande K, Chauhan N and Singhvi AK, 2013. Rapid denudationof higher himalaya during late Pleistocence, evidence from OSL thermochronology. Geochronometria 40: 304–310, DOI 10.2478/s13386-013-0124-7.
- 20. Tang SL and Li SH, 2015. Low temperature thermochronology using thermoluminescence signals from quartz. Radiation Measurements 81: 92–97, DOI 10.1016/j.radmeas.2015.04.011.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-17613d6a-6d2d-49a0-9bc8-b6fbd202d5fc