PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determination of Difference Amount in Reference Evapotranspiration between Urban and Suburban Quarters in Karbala City

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Evapotranspiration represents one of the main parameters in the hydrological cycle. It is usually expressed by the term reference evapotranspiration (ETo) that is affected by certain meteorological parameters. This study aimed to find the difference amount in ETo between urban and suburban quarters in Karbala city. The study methodology involved selecting once urban area and four suburban quarters. Two methods of determining the reference evapo- transpiration were applied: first, a direct method which measured ETo at selected fields by using a hand-held device, and second, an indirect method using the Penman-Monteith equation. The findings showed that the magnitudes of ETo by the Penman-Monteith equation are higher than the values measured by the direct method for urban and suburban quarters. Moreover, it was found that the absolute percentage of difference in the average amount of ETo between urban and suburban quarters is 13% by using the direct method and 61% by using Penman-Monteith equation. The study conclusion is that suburban area has higher magnitude of ETo than urban quarter by using any of direct method and indirect method (Penman-Monteith equation).
Rocznik
Strony
180--191
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Department, Civil Engineering, College of Engineering, University of Kerbala, P.O. Box 56001, Karbala, Iraq
  • Department, Civil Engineering, College of Engineering, University of Kerbala, P.O. Box 56001, Karbala, Iraq
  • Department, Civil Engineering, College of Engineering, University of Kerbala, P.O. Box 56001, Karbala, Iraq
  • Department, Civil Engineering, College of Engineering, University of Kerbala, P.O. Box 56001, Karbala, Iraq
  • Department, Civil Engineering, College of Engineering, University of Kerbala, P.O. Box 56001, Karbala, Iraq
  • University of Kerbala, P.O. Box 56001, Karbala, Iraq
Bibliografia
  • 1. Algretawee, H., Alshama, G. 2021. Modeling of Evapotranspiration (ETo) in a Medium Urban Park within a Megacity by Using Artificial Neural Network (ANN) Model. Periodica Polytechnica Civil Engineering, 65(4), 1260–1268. https://doi.org/10.3311/PPci.18187.
  • 2. Allen, R.G., Pereira, L.S., Raes, D., Smith, M. 1998. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements, FAO Irrigation and Drainage paper 56, FAO - Food and Agriculture Organization of the United Nations, Rome, Italy 1998.
  • 3. Balogun, A.A., Adegoke, J.O., Vezhapparambu, S., Mauder, M., McFadden, J.P., Gallo, K. 2009. Surface energy balance measurements above an exurban residential neighbourhood of Kansas City, Missouri. Boundary-Layer Meteorology, 133(3), 299–321.
  • 4. Bandyopadhyay, A., Bhadra, A., Raghuwanshi, N.S., Singh, R. 2009. Temporal trends in estimates of reference evapotranspiration over India. Journal of Hydrologic Engineering, 14(5), 508–515.
  • 5. Chen, J., Chen, B., Black, T.A., Innes, J.L., Wang, G., Kiely, G., Hirano, T. Wohlfahrt, G. 2013. Comparison of terrestrial evapotranspiration estimates using the mass transfer and Penman‐Monteith equations in land surface models. Journal of Geophysical Research: Biogeosciences, 118(4), 1715–1731. https://doi.org/10.1002/2013JG002446
  • 6. Croitoru, A.E., Piticar, A., Dragotă, C.S., Burada, D.C. 2013. Recent changes in reference evapotranspiration in Romania. Global and Planetary Change, 111, 127–136.
  • 7. Dadaser‐Celik, F., Cengiz, E., Guzel, O. 2016. Trends in reference evapotranspiration in Turkey: 1975–2006. International Journal of Climatology, 36(4), 1733–1743.
  • 8. Djaman, K., Balde, A.B., Sow, A., Muller, B., Irmak, S., N’Diaye, M.K., Manneh, B., Moukoumbi, Y.D., Futakuchi, K. and Saito, K. 2015. Evaluation of sixteen reference evapotranspiration methods under sahelian conditions in the Senegal River Valley. Journal of Hydrology: regional studies, 3, 139–159.
  • 9. Djaman, K., Diop, L., Koudahe, K., Bodian, A., Ndiaye, P.M. 2020. Evaluation of temperature-based solar radiation models and their impact on Penman-Monteith reference evapotranspiration in a semiarid climate, MedCrave. International Journal of Hydrology, 4(2), 84‒95.
  • 10. Elferchichi, A., Giorgio, G.A., Lamaddalena, N., Ragosta, M., Telesca, V. 2017. Variability of temperature and its impact on reference evapotranspiration: The test case of the Apulia Region (Southern Italy). Sustainability, 9(12), 2337.
  • 11. George, B.A., Reddy, B.R.S., Raghuwanshi, N.S., Wallender, W.W. 2002. Decision Support System for Estimating Reference Evapotranspiration. Journal of Irrigation and Drainage Engineering, 128, 1(1).
  • 12. Gong, L., Xu, C.Y., Chen, D., Halldin, S., Chen, Y.D. 2006. Sensitivity of the Penman–Monteith reference evapotranspiration to key climatic variables in the Changjiang (Yangtze River) basin. Journal of hydrology, 329(3–4), 620–629.
  • 13. Hargreaves, G.H., Samani, Z.A. 1985. Reference Crop Evapotranspiration from Temperature, Trans. ASAE, Applied Engineering in Agriculture, 1, 96–99.
  • 14. Liuzzo, L., Viola, F., Noto, L.V. 2016. Wind speed and temperature trends impacts on reference evapotranspiration in Southern Italy. Theoretical and applied climatology, 123(1–2), 43–62.
  • 15. Majozi, N.P., Mannaerts, C.M., Ramoelo, A., Mathieu, R., Verhoef, W. 2021. Uncertainty and Sensitivity Analysis of a Remote-Sensing-Based Penman–Monteith Model to Meteorological and Land Surface Input Variables. MDPI, Remote Sensing, 13(882), 1–18. https://doi.org/10.3390/rs13050882
  • 16. McColl, K.A. 2020. Practical and Theoretical Benefits of an Alternative to the Penman-Monteith Evapotranspiration Equation, AGU100 Advancing Earth and Science, Water Resources Research, 1–15. https://doi.org/10.1029/2020WR027106
  • 17. Ndiaye, P.M., Bodian, A., Diop, L., Djaman, K. 2017. Sensitivity Analysis of the Penman-Monteith Reference Evapotranspiration to Climatic Variables: Case of Burkina Faso. Journal of Water Resource and Protection, 9, 1364–1376. http://www.scirp.org/journal/jwarp
  • 18. Offerle, B., Grimmond, C.S.B., Fortuniak, K., Pawlak, W. 2006. Intraurban differences of surface energy fluxes in a central European city. Journal of Applied Meteorology and Climatology, 45(1), 125–136.
  • 19. Peters, E.B., Hiller, R.V., McFadden, J.P. 2011. Seasonal contributions of vegetation types to suburban evapotranspiration. Journal of Geophysical Research: Biogeosciences, 116(G1).
  • 20. Quej, V.H., Almorox, J., Arnaldo, J.A., Moratiel, R. 2019. Evaluation of temperature-based methods for the estimation of reference evapotranspiration in the Yucatán peninsula, Mexico. Journal of Hydrologic Engineering, 24(2), 05018029.
  • 21. Rodrigues, G.C., Braga R.P. 2021. A Simple Procedure to Estimate Reference Evapotranspiration during the Irrigation Season in a Hot-Summer Mediterranean Climate. MDPI, Sustainability, 13(349), 1–13. https://doi.org/10.3390/su13010349
  • 22. Senay, G.B., Verdin, J.P., Lietzow, R., Melesse, A.M. 2008. Global daily reference evapotranspiration modeling and evaluation 1. JAWRA Journal of the American Water Resources Association, 44(4), 969–979.
  • 23. Silva, D., Meza, F. J., Varas, E. 2010. Estimating reference evapotranspiration (ETo) using numerical weather forecast data in central Chile. Journal of Hydrology, 382(1–4), 64–71.
  • 24. Song, X., Lu, F., Xiao, W., Zhu, K., Zhou, Y., Xie, Z. 2018. Performance of 12 reference evapotranspiration estimation methods compared with the Penman–Monteith method and the potential influences in northeast China. Meteorological Applications, 1–14. https://doi.org/10.1002/met.1739
  • 25. Temesgen, B., Eching, S., Davidoff, B., Frame, K. 2005. Comparison of Some Reference Evapotranspiration Equations for California. Journal of Irrigation and Drainage Engineering, 131(1).
  • 26. Tran, T.H.N., Honti, M. 2017. Application of Different Evapotranspiration Models to Calculate Total Agricultural Water Demand in a Tropical Region. Periodica Polytechnica Civil Engineering, 61(4), 904–910. https://doi.org/10.3311/PPci.10283
  • 27. Valipour, M. 2014. Temperature analysis of reference evapotranspiration models. Meteorological Applications, 22(3), 385–394. https://doi.org/10.1002/met.1465
  • 28. Vicente-Serrano, S.M., Azorin-Molina, C., Sanchez-Lorenzo, A., Revuelto, J., López-Moreno, J., I., González-Hidalgo, J.C., Moran-Tejeda, E., Espejo, F. 2014. Reference evapotranspiration variability and trends in Spain, 1961–2011. Global and planetary change, 121, 26–40. https://doi.org/10.1016/j.gloplacha.2014.06.005
  • 29. Xu, C.Y., Gong, L., Jiang, T., Chen, D. 2006. Decreasing reference evapotranspiration in a warming climate - A case of Changjiang (Yangtze) River catchment during 1970–2000. Advances in Atmospheric Sciences, 23(4), 513–520.
  • 30. Xu, C.Y., Gong, L., Jiang, T., Chen, D., Singh, V.P. 2006. Analysis of spatial distribution and temporal trend of reference evapotranspiration and pan evaporation in Changjiang (Yangtze River) catchment. Journal of hydrology, 327(1–2), 81–93. https://doi.org/10.1016/j.jhydrol.2005.11.029
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-175a525d-065d-4632-8bb9-0a1fb3ec5f1e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.