PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Enhancement of electronic, photophysical and optical properties of 5,5′-Dibromo-2,2′-bithiophene molecule : new aspect to molecular design

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aims of this study were to enhance electronic, photophysical and optical properties of molecular semiconductors. For this purpose, the isomers of the B-doped molecule (5,5′-Dibromo-2,2′-bithiophene) have been investigated by density functional theory (DFT) based on B3LYP/6-311++G** level of theory. The isomers were first calculated using kick algorithm. The most stable isomers of the B-doped molecule are presented depending on the binding energy, fragmentation energy, ionization potential, electron affinity, chemical hardness, refractive index, radial distribution function and HOMO-LUMO energy gap based on DFT. Ultraviolet-visible (UV–vis) spectra have been also researched by time-dependent (TD) DFT calculations. The value of a band gap for isomer with the lowest total energy decreases from 4.20 to 3.47 eV while the maximum peaks of the absorbance and emission increase from 292 to 324 nm and 392 to 440 nm with boron doped into 5,5′-Dibromo-2,2′-bithiophene. Obtained results reveal that the B-doped molecule has more desirable optoelectronic properties than the pure molecule.
Słowa kluczowe
Twórcy
autor
  • Department of Mathematics and Science Education, Nevşehir Hacı Bektaş Veli University, 50300, Nevşehir, Turkey
autor
  • Department of Electronics and Automation, Ahi Evran University, 40100, Kırşehir, Turkey
Bibliografia
  • [1] A. Farcas, I. Ghosh, V.C. Grigoras, I. Stoica, C. Peptu, W.M. Nau, Effect of rotaxane formation on the photophysical, morphological, and adhesion properties of poly[2,7-(9,9-dioctylfluorene)-alt-(5,5 ‘-bithiophene)] main-chain polyrotaxanes, Macromol. Chem. Phys. 212 (2011) 1022–1031, http://dx.doi.org/10.1002/macp.201000727.
  • [2] B.B. Carbas, Novel electrochromic copolymers based on 3-3’-dibromo-2-2’bithiophene and 3,4 ethylene dioxythiophene, Polymer (Guildf.) 113 (2017) 180–186, http://dx.doi.org/10.1016/j.polymer.2017.02.053.
  • [3] Y. Sert, A.A. Balakit, N. Ozturk, F. Ucun, G.A. El-Hiti, Experimental (FT-IR, NMR and UV) and theoretical (M06-2X and DFT) investigation, and frequency estimation analyses on (E)-3-(4-bromo-5-methylthiophen-2-yl)acrylonitrile, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 131 (2014) 502–511, http://dx.doi.org/10.1016/j.saa.2014.04.105.
  • [4] A. Bhuwalka, J.F. Mike, J.J. Intemann, A. Ellern, M. Jeffries-El, A versatile and efficient synthesis of bithiophene-based dicarboxaldehydes from a common synthon, Org. Biomol. Chem. 13 (2015) 9462–9470, http://dx.doi.org/10.1039/c5ob01135c.
  • [5] K. Takagi, E. Kawagita, R. Kouchi, Synthesis and characterization of polythiophene derivatives with nitrogen heterocycles on the side chain, J.Polym. Sci. Part A: Polym. Chem. 52 (2014) 2166–2174, http://dx.doi.org/10.1002/pola.27228.
  • [6] P. Piyakulawat, A. Keawprajak, K. Jiramitmongkon, M. Hanusch, J. Wlosnewski, U. Asawapirom, Effect of thiophene donor units on the optical and photovoltaic behavior of fluorene-based copolymers, Sol. Energy Mater. Sol. Cells 95 (2011) 2167–2172, http://dx.doi.org/10.1016/j.solmat.2011.03.019.
  • [7] M. Campione, M. Parravicini, M. Moret, A. Papagni, B. Schroeter, T. Fritz, Electroless silver plating of the surface of organic semiconductors, Langmuir 27 (2011) 12008–12015, http://dx.doi.org/10.1021/la2025999.
  • [8] M. Melucci, L. Favaretto, G. Barbarella, A. Zanelli, N. Camaioni, M. Mazzeo, G. Gigli, Synthesis and optoelectronic properties of a red emitting branched polymer containing V-shaped oligothiophene-S,S-dioxides as repeating units, Tetrahedron 63 (2007) 11386–11390, http://dx.doi.org/10.1016/j.tet.2007.08.084.
  • [9] R. Bobrovsky, C. Hametner, W. Kalt, J. Froehlich, Selective halogen dance reactions at 5,5’-dibromo-2,2’-bithiophene, Heterocycles 76 (2008) 1249–1259.
  • [10] A. Stefanache, M. Silion, I. Stoica, A. Fifere, V. Harabagiu, A. Farcas, Poly{[}2,7-(9,9-dioctylfluorene)-alt-(5,5 ‘-bithiophene/permethylated beta-cyclodextrin) main-chain polyrotaxane: synthesis, characterization and surface morphology, Eur. Polym. J. 50 (2014) 223–234, http://dx.doi.org/10.1016/j.eurpolymj.2013.11.001.
  • [11] P. Gerstner, D. Rohde, H. Hartmann, A versatile route to N,N‘-(peraryl)substituted 5,5 ‘-diamino-2,2 ‘-bithiophenes, Synthesis-Stuttgart (2002) 2487–2489.
  • [12] S.-L. Chang, C.-W. Lu, Y.-Y. Lai, J.-Y. Hsu, Y.-J. Cheng, Synthesis and molecular properties of two isomeric dialkylated tetrathienonaphthalenes, Org. Lett. 18 (2016) 368–371, http://dx.doi.org/10.1021/acs.orglett.5b03294.
  • [13] M. Kurban, B. Gündüz, Electronic structure, optical and structural propertiesof organic 5,5-Dibromo-2,2-bithiophene, Optik (Stuttg) 165 (2018) 370–379,http://dx.doi.org/10.1016/j.ijleo.2018.04.003.
  • [14] S.A. Shin, J.-H. Kim, J.B. Park, D.-H. Hwang, Semiconducting polymersconsisting of anthracene and benzotriazole units for organic solar cells, J.Nanosci. Nanotechnol. 15 (2015) 1515–1519, http://dx.doi.org/10.1166/jnn.2015.9325.
  • [15] G.O. Menéndez, M. Eva Pichel, C.C. Spagnuolo, E.A. Jares-Erijman, NIR fluorescent biotinylated cyanine dye: optical properties and combinationwith quantum dots as a potential sensing device, Photochem. Photobiol. Sci.12 (2013) 236–240, http://dx.doi.org/10.1039/C2PP25174D.
  • [16] M. Saunders, Stochastic search for isomers on a quantum mechanical surface, J. Comput. Chem. 25 (2004) 621–626, http://dx.doi.org/10.1002/jcc.10407.
  • [17] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R.Cheeseman, et al., Gaussian 09, Revision E.01, Gaussian, Inc., Wallingford CT,2019.
  • [18] A.D. Becke, A new mixing of hatree-fock and local density functional theories, J. Chem. Phys. 98 (1993) 1372–1377, http://dx.doi.org/10.1063/1.464304.
  • [19] F. Jensen, Introduction to Computational Chemistry, John Wiley & Sons, Inc.,USA, 2006.
  • [20] C.L. Tang, Fundamentals of Quantum Mechanics: For Solid State Electronicsand Optics, Cambridge University Press, 2005, http://dx.doi.org/10.1017/CBO9781139165273.
  • [21] N. Heydari, S. Mohammad Bagher Ghorashi, W. Han, H.-H. Park, QuantumDot-Based Light Emitting Diodes (QDLEDs): New Progress, 2017, http://dx.doi.org/10.5772/intechopen.69014.
  • [22] A.P. Kulkarni, C.J. Tonzola, A. Babel, S.A. Jenekhe, Electron transport materialsfor organic light-emitting diodes, Chem. Mater. 16 (2004) 4556–4573, http://dx.doi.org/10.1021/cm049473l.
  • [23] N.M. Ravindra, S. Auluck, V.K. Srivastava, On the Penn gap in semiconductors, Phys. Status Solidi 93 (2019) K155–K160, http://dx.doi.org/10.1002/pssb.2220930257.
  • [24] M. Kurban, B. Gunduz, Physical and optical properties of DCJTB dye for OLED display applications: experimental and theoretical investigation, J. Mol. Struct.1137 (2017) 403–411, http://dx.doi.org/10.1016/j.molstruc.2017.02.064.
  • [25] M. Kurban, Electronic structure, optical and structural properties of Si, Ni, Band N-doped a carbon nanotube: DFT study, Optik (Stuttg.) 172 (2018)295–301, http://dx.doi.org/10.1016/j.ijleo.2018.07.028.
  • [26] B. Gunduz, M. Kurban, Photonic, spectroscopic properties and electronicstructure of PTCDI-C8 organic nanostructure, Vib. Spectrosc. 96 (2018) 46–51,http://dx.doi.org/10.1016/j.vibspec.2018.02.008.
  • [27] T. Yanai, D.P. Tew, N.C. Handy, A new hybrid exchange–correlation functionalusing the Coulomb-attenuating method (CAM-B3LYP), Chem. Phys. Lett. 393(2004) 51–57, http://dx.doi.org/10.1016/j.cplett.2004.06.011
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1753c13c-6123-43be-aabd-f63b276f0f8d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.