PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Compartmental model of the pharmacokinetics of drugs excreted by bile or by non-renal mode

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The theoretical biology analysis, uses mathematical and physical models and bioinformatics tools in practical medicine. The analysis in silico reduces time and costs of new designed drugs and provides wider spectrum of information for exploration. Moreover, bioinformatics analysis of genome and proteome, especially with the use of microarray allows specifying diagnosis and therapy. The methods enabling precise preparation of therapy by means of accurate medicine dosage are being currently searched, such an approach permits to increase the effectiveness of therapy, eradicate side effects (i.e. medicine overdosing), reduce the total cost of therapy and cut down its interval. The elaborated model involves the partition of human body into compartments having different physical features: weight and volume, or physiological character: metabolic efficiency, penetration rate of drug. Additional parameters can be introduced to the model: Wa/b, Wwzb and λ. Due to the nature of simulation each individual case can be run with high precision. The model is implemented in the GROW_4 virtual environment which is accessible free of charge on the websites: www.sitcome.vacau.com or www.uwm.edu.pl/bioinfo (in science/projects/grow).
Rocznik
Strony
31--37
Opis fizyczny
Bibliogr. 19 poz., tab., wykr.
Twórcy
  • Department of Plant Physiology and Biotechnology Faculty of Biology, The University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 1A/113 10-719 Olsztyn/Poland
autor
  • Department of Plant Physiology and Biotechnology Faculty of Biology, The University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 1A/113 10-719 Olsztyn/Poland
Bibliografia
  • 1. Luo G., Johnson S., Hsueh M.M., et al.: In silico prediction of biliary excretion of drugs in rats based on physicochemical properties. Drug Metab. Dispos. 2010, 38: 422-430.
  • 2. Poirier A., Funk C., Scherrmann J.M., et al.: Mechanistic modeling of hepatic transport from cells to whole body: application to napsagatran and fexofenadine. Mol. Pharm. 2009, 6: 1716-1733.
  • 3. Fagerholm U.: Prediction of human pharmacokinetics-biliary and intestinal clearance and enterohepatic circulation. J. Pharm. Pharmacol. 2008, 60: 535-542.
  • 4. Borodulin-Nadzieja L.: Human physiology - a handbook for students, Medical Publisher Gornicki, Wroclaw, 2005.
  • 5. Hermann T.: Pharmacokinetics: Theory and Practice Medical Publisher PZWL, Warsaw, 2002.
  • 6. Kostowski W., Herman Z.: Pharmacology – Basics of pharmacology, Medical Publisher PZWL, Warsaw, 2008.
  • 7. Bachs L., Bramness J., Skurtveit S., et al.: Morphine Blood Concentration and Clinical Impairment in the Population of Drugged Drivers, www.icadts.org/T2004/pdfs/O9.pdf , (07.2010).
  • 8. Rossi S.: Het Australische Handboek van Geneesmiddelen. ISBN 0-9757919-6-7, 2008.
  • 9. Srinivasan V., Wielbo D., Tebbett I. R.: Analgesic effects of codeine-6-glucuronide after intravenous administration, European Journal of Pain 1997, Volume 1, 3: 185-190.
  • 10. Ceder G., Jones A.: Concentration Ratios of Morphine to Codeine in Blood of Impaired Drivers as Evidence of Heroin Use and not Medication with Codeine. Clinical Chemistry 1980-1984, 2001, 47: 11.
  • 11. Panas M.: „Pharmacokinetic and toxicokinetic parameters of some relevant drugs of abuse”, Przegląd Lekarski 2001, (58) 4: 373-375.
  • 12. Bianchi G., Ferretti P., Recchia M., et al.: Morphine tissue levels and reduction of gastrointestinal transit in rats. Correlation supports primary action site in the gut, Gastroenterologyn 1983, 85(4): 852-858.
  • 13. Ceder G., Jones A.W.: Concentration Ratios of Morphine to Codeine in Blood of Impaired Drivers as Evidence of Heroin Use and not Medication with Codeine, Clinical Chemistry 2001, 47: 1980-1984.
  • 14. Gjerde H., Mordal J., Christophersen A.S., et al.: Comparison of drug concentrations in blood and oral fluid collected with the Intercept sampling device. J. Anal. Toxicol. 2010, 34(4): 204-209.
  • 15. Boström E., Hammarlund-Udenaes M., Simonsson U.S.: Blood-brain barrier transport helps to explain discrepancies in in vivo potency between oxycodone and morphine. Anesthesiology 2008, 108(3): 495-505.
  • 16. Quiding H., Anderson P., Bondesson U., et al.: Plasma concentrations of codeine and its metabolite, morphine, after single and repeated oral administration. Eur. J. Clin. Pharmacol. 1989, 30(6): 673-677.
  • 17. Findlay J.W., Fowle A.S., Butz R.F., et al.: Comparative disposition of codeine and pholcodine in man after single oral doses. Br. J. Clin. Pharmacol.1986, 22(1): 61-71.
  • 18. http://www.pharma.ethz.ch/institute_groups/biopharmacy/teaching/pharma_calc.
  • 19. Lee C., Lee Y., Setzer R.W.: A pharmacokinetic program (PKfit) for R, Annual Meeting of the Pharmaceutical Society of the Republic of China, Chia Nan University of Pharmacy and Science: Taiwan 2005.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-174d35b7-e7b4-4ca7-bf35-0a4441726330
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.