PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Anatomical factors of human respiratory tract influencing volume flow rate and number of particles arriving at each bronchus

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Inhalants, such as bronchodilators, are often used to treat asthma. Numerical simulation can be applied to quantitatively evaluate the transport and deposition of medicinal particulates in the respiratory tract. In this study, numerical simulation of an airflow including particles in a tracheobronchial model was conducted based on a computed tomography (CT) image of a human respiratory tract, and then the anatomical factors of the airway that influence the volume flow rate and the number of particles arriving at each bronchus were investigated. The oral cavity, pharynx, larynx, trachea, and intra-thoracic central airways of up to seven generations were modeled from the CT image. The airflow was simulated by large eddy simulation using OpenFOAM ver. 2.3.1. The particle transport was calculated in a Lagrangian manner. Statistical analysis was performed on the results of computational fluid dynamics simulation. It was found that the cross-sectional area of the outlet boundary, the total distance of the center line of the respiratory tract between the carina and the outlet boundary, and the angles between each bronchus and the trachea have large influences on the volume flow rate at each outlet. These influences increase almost linearly as the inhalation flow rate increases. The outlet area and the total angle markedly influenced the number of arriving particles. Larger particles are more likely to be influenced by the angle at which the direction of the particle is deflected. As the inhalation flow rate increases, the influence of the total angle increases and that of the outlet area decreases in all particle conditions.
Twórcy
  • Department of Pharmaceutical Sciences, Teikyo Heisei University, 4-21-2 Nakano, Nakano-ku, Tokyo 164-8530, Japan
  • Department of Engineering and Applied Sciences, Sophia University, Tokyo Japan
Bibliografia
  • [1] Rissler J, Gudmundsson A, Nicklasson H, Swietlicki E, Wollmer P, Löndahl J. Deposition efficiency of inhaled particles (15–5000 nm) related to breathing pattern and lung function: an experimental study in healthy children and adults. Part Fibre Toxicol 2017;14:10. http://dx.doi.org/10.1186/s12989-017-0190-8.
  • [2] Sturm R. Modeling the deposition of bioaerosols with variable size and shape in the human respiratory tract – a review. J Adv Res 2012;3(4):295–304. http://dx.doi.org/10.1016/j.jare.2011.08.003.
  • [3] Sturm R. Total deposition of ultrafine particles in the lungs of healthy men and women: experimental and theoretical results. Ann Transl Med 2016;4(12):234. http://dx.doi.org/10.21037/atm.2016.06.05.
  • [4] Heyder J. Deposition of inhaled particles in the human respiratory tract and consequences for regional targeting in respiratory drug delivery. Proc Am Thorac Soc 2004;1(4):315– 20. http://dx.doi.org/10.1513/pats.200409-046TA.
  • [5] Backer JWD, Vos WG, Devolder A, Verhulst SL, Germonpré P, Wuyts FL, et al. Computational fluid dynamics can detect changes in airway resistance in asthmatics after acute bronchodilation. J Biomech 2008;41(1):106–13. http://dx.doi.org/10.1016/j.jbiomech.2007.07.009.
  • [6] Xi J, Longest PW, Martonen TB. Effects of the laryngeal jet on nano- and microparticle transport and deposition in an approximate model of the upper tracheobronchial airways. J Appl Physiol 2008;104(1):1761–77. http://dx.doi.org/10.1152/japplphysiol.01233.2007.
  • [7] Ma B, Lutchen KR. CFD simulation of aerosol deposition in an anatomically based human large-medium airway model. Ann Biomed Eng 2009;37:271–85. http://dx.doi.org/10.1007/s10439-008-9620-y.
  • [8] Lambert AR, O'Shaughnessy PT, Tawhai MH, Hoffman EA, Lin C-L. Regional deposition of particles in an image-based airway model: large-Eddy simulation and left right lung ventilation asymmetry. Aerosol Sci Technol 2011;45:11–25. http://dx.doi.org/10.1080/02786826.2010.78.
  • [9] Miyawaki S, Tawhai MH, Hoffman EA, Lin C-L. Effect of carrier gas properties on aerosol distribution in a CT-based human airway numerical model. Ann Biomed Eng 2012;40:1495–507. http://dx.doi.org/10.1007/s10439-011-0503-2.
  • [10] Longest PW, Tian G, Walenga RL, Hindle M. Comparing MDI and DPI aerosol deposition using in vitro experiments and a new stochastic individual path (SIP) model of the conducting airways. Pharm Res 2012;29:1670–88. http://dx.doi.org/10.1007/s11095-012-y-0691.
  • [11] Tian G, Hindle M, Lee S, Longest PW. Validating CFD predictions of pharmaceutical aerosol deposition with in vivo data. Pharm Res 2015;32:3170–87. http://dx.doi.org/10.1007/s11095-015-1695-1.
  • [12] Forman M, Jicha M, Katolicky J. Aerosol deposition in human airways during breathing cycle. Appl Comput Mech 2007;1:437–44.
  • [13] Sosnowski TR, Moskal A, Gradon L. Dynamics of oropharyngeal aerosol transport and deposition with the realistic flow pattern. Inhal Toxicol 2006;18(10):773–80. http://dx.doi.org/10.1080/08958370600748737.
  • [14] Zhang Z, Kleinstreuer C, Kim CS. Effects of curved inlet tubes on air flow and particle deposition in bifurcating lung models. J Biomech 2001;34:659–69. http://dx.doi.org/10.1016/S0021-9290(00)00233-5.
  • [15] Zhang Z, Kleinstreuer C. Airflow structures and nano-particle deposition in a human upper airway model. J Comput Phys 2004;198:178–210. http://dx.doi.org/10.1016/j.jcp.11.2003.034.
  • [16] Kleinstreuer C, Zhang Z, Li Z. Modeling airflow and particle transport/deposition in pulmonary airways. Respir Physiol Neurobiol 2008;163:128–38. http://dx.doi.org/10.1016/j.resp.2008.07.002.
  • [17] Soni B, Aliabadi S. Large-scale CFD simulations of airflow and particle deposition in lung airway. Comput Fluids 2013;88:804–12. http://dx.doi.org/10.1016/j.compfluid.2013.06.015.
  • [18] Moskal A, Gradon L. Temporary and spatial deposition of aerosol particles in the upper human airways during breathing cycle. J Aerosol Sci 2002;33(11):1525–39. http://dx.doi.org/10.1016/S0021-8502(02)00108-8.
  • [19] Yoshizawa A, Horiuti K. A statistically-derived subgrid-scale kinetic energy model for the large-eddy simulation of turbulent flows. J Phys Soc Japan 1985;54(8):2834–9. http://dx.doi.org/10.1143/JPSJ.54.2834.
  • [20] Teherian S, Rahai HR. CFD modeling and analysis of pulmonary airways/particles transport and deposition. 41st AISS Fluid Dynamics Conference and Exhibit. AIAA 2011-3270; 2011.
  • [21] Aasgrav E, Johnsen SG, Simonsen AF, Müller B. CFD simulations of turbulent flow in the human upper airways. 12th International Conference on CFD in Oil & Gas; 2017.
  • [22] Watanabe H, Uesugi D, Muto M. Effects of parcel model on the particle motion in a turbulent mixing layer. J Soc Powder Technol Japan 2014;51(12):846–55. http://dx.doi.org/10.4164/sptj.51.846.
  • [23] Burnham, Kenneth P, Anderson, David R. Model selection and multimodel inference: a practical information-theoretical approach. 2d ed. New York: SpringerVerlag; 2002. http://dx.doi.org/10.1007/b97636.
  • [24] Oztuna D, Elhan AH, Tuccar E. Investigation of four different normality tests in terms of type 1 error rate and power under different distributions. Turk J Med Sci 2006;36 (3):171–6.
  • [25] Peat J, Barton B. Medical statistics: a guide to data analysis and critical appraisal. Blackwell Publishing; 2005.
  • [26] Usmani OS, Biddiscombe MF, Barnes PJ. Regional lung deposition and bronchodilator response as a function of be-agonist particle size. Am J Respir Crit Care Med 2005;172 (12):1497–504. http://dx.doi.org/10.1164/rccm.200410-OC1414.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-174c2425-13c9-4f28-a985-77e318dab082
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.