PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Acoustic based assessment of cross-sectional concentration inhomogeneity at a suspended sediment monitoring station in a large river

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Establishing and operating a harmonized sediment monitoring system along large rivers such as the Danube River is a challenging international task. As an element of such a system, a new monitoring site with state-of-the-art instrumentation is currently under development in the Upper-Hungarian section of the Danube River. The monitoring station will consist of a nearbank optical backscatter sensor and a horizontal acoustic Doppler current profiler (H-ADCP). As previous studies showed, the suspended sediment concentration (SSC) that is continuously measured with near-bank sensors can significantly enhance the temporal resolution of sediment transport monitoring. However, sediment plumes from tributary inflows upstream of the monitoring station can alter the detected near-bank concentrations, eventually biasing the sediment load estimation. Such an influence is likely in the cross-section of the planned monitoring station, therefore, a thorough preliminary analysis of the cross-sectional variation of the SSC was performed, based on expeditionary sediment measurement campaigns. Between 2018 and 2021 24 campaigns were carried out at different hydrological regimes, where physical sediment samplings together with fixed and moving boat ADCP measurements were performed. The cross-sectional variability of SSC and its influence on the sediment load estimations were assessed based on the moving boat ADCP measurements, after calibrating the backscatter signal with more than 500 physical samples. Based on the results, we identified different cross-sectional patterns of the SSC which is apparently governed by: (i) the actual hydrological situation considering both the main river and the tributary, and (ii) the local river morphology. Based on our findings, we suggested a correction method that accounts for the above effects, using which the near-bank SSC can be reliably converted into total suspended sediment load.
Czasopismo
Rocznik
Strony
2361--2377
Opis fizyczny
Bibliogr. 69 poz.
Twórcy
  • Department of Hydraulic and Water Resources Engineering, Faculty of Civil Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest 1111, Hungary
  • Department of Hydraulic and Water Resources Engineering, Faculty of Civil Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest 1111, Hungary
Bibliografia
  • 1. Agrawal YC, Pottsmith HC (2000) Instruments for particle size and settling velocity observations in sediment transport. Mar Geol 168:89–114. https://doi.org/10.1016/S0025-3227(00)00044-X
  • 2. Agrawal YC, Hanes DM (2015) The implications of laser-diffraction measurements of sediment size distributions in a river to the potential use of acoustic backscatter for sediment measurements. Water Resour Res 51:8854–8867. https://doi.org/10.1002/2015WR017268
  • 3. Agrawal YC, Whitmire A, Mikkelsen OA, Pottsmith HC (2008) Light scattering by random shaped particles and consequences on measuring suspended sediments by laser diffraction. J Geophys Res 113:871. https://doi.org/10.1029/2007JC004403
  • 4. Agrawal YC, Slade W, Pottsmith HC, Dana D (2016) Technologies and experience with monitoring sediments for protecting turbines from abrasion. IOP Conf Ser: Earth Environ Sci 49:122005. https://doi.org/10.1088/1755-1315/49/12/122005
  • 5. Aleixo R, Guerrero M, Nones M, Ruther N (2020) Applying ADCPs for long-term monitoring of SSC in rivers. Water Resour Res 56(1):812. https://doi.org/10.1029/2019WR026087
  • 6. Baranya S, Józsa J (2013) Estimation of suspended sediment concentrations with ADCP in Danube river. J Hydrol Hydromech 61:232–240. https://doi.org/10.2478/johh-2013-0030
  • 7. BMFLUW (2017) Schwebstoffe im Fließgewässer – Leitfaden zur Erfassung des Schwebstofftransports. Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, 2. Auflage, Vienna, Austria. https://info.bmlrt.gv.at/dam/jcr:479ff2f0-b143-4560-a9a9-36c464c25125/Leitfaden_Schwebstoffmessung_2te-Auflage.pdf. Accessed 14 October 2021
  • 8. Bogárdi J (1971) Sediment Transport in Alluvial Streams, 1st ed., Akadémiai Kiadó: Budapest, Hungary, pp. 44–48., ISBN 978–963–050–278–8.
  • 9. Boss E, Sherwood CR, Hill P, Milligan T (2018) Advantages and limitations to the use of optical measurements to study sediment properties. Appl Sci 8(12):2692. https://doi.org/10.3390/app8122692
  • 10. Curtis JA (2008) Summary of Optical-Backscatter and Suspended-Sediment Data, Tomales Bay Watershed, California, Water Years 2004,2005, and 2006: U.S. Geological Survey Scientific Investigations Report 2007–5224, 16 p.
  • 11. Czuba JA, Straub TD, Curran CA, Landers MN, Domanski MM (2015) Comparison of fluvial suspended-sediment concentrations and particle-size distributions measured with in-stream laser diffraction and in physical samples. Water Resour Res 51:320–340. https://doi.org/10.1002/2014WR015697
  • 12. DanubeSediment (2019a) Sediment Monitoring in the Danube River. Approved project report. http://www.interreg-danube.eu/approved-projects/danubesediment/outputs. Accessed 14 Oct 2021
  • 13. DanubeSediment (2019b) Handbook on Good Practices in Sediment Monitoring. Approved project report. 2019. http://www.interreg-danube.eu/approved-projects/danubesediment/outputs. Accessed 14 Oct 2021
  • 14. DanubeSediment (2019c) Analysis of Sediment Data Collected along the Danube. Approved project report. http://www.interreg-danube.eu/approved-projects/danubesediment/outputs. Accessed 14 October 2021
  • 15. DanubeSediment (2020) Long-term Morphological Development of the Danube in Relation to the Sediment Balance. Approved project report. http://www.interreg-danube.eu/approved-projects/danubesediment/outputs. Accessed 14 Oct 2021
  • 16. Deines KL (1999) Backscatter Estimation Using Broadband Acoustic Doppler Current Profilers. Oceans 99 MTS, IEEE Proceedings, San Diego, California. https://doi.org/10.1109/CCM.1999.755249
  • 17. de Oliveira PA, Blanco CJC, Mesquita ALA, Lopes DF, Filho MDCF (2021) Estimation of suspended sediment concentration in Guamá River in the Amazon region. Environ Monit Assess 193:79. https://doi.org/10.1007/s10661-021-08901-w
  • 18. Downing J (2006) Twenty-five years with OBS sensors: the good, the bad, and the ugly. Cont Shelf Res 26:2299–2318. https://doi.org/10.1016/j.csr.2006.07.018
  • 19. Dredging Research Limited (2003) The Sediview Method – Sediview Procedure Manual.
  • 20. Dwinovantyo A, Manik HM, Prartono T, Susilohadi S (2017) Quantification and analysis of suspended sediments concentration using mobile and static acoustic doppler current profiler instruments. Adv Acoust Vib 4890421:1–14. https://doi.org/10.1155/2017/4890421
  • 21. Felix D, Albayrak I, Boes RM (2018) In-situ investigation on real-time suspended sediment measurement techniques: turbidimetry, acoustic attenuation, laser diffraction (LISST) and vibrating tube densimetry. Int J Sediment Res 33(1):3–17. https://doi.org/10.1016/j.ijsrc.2017.11.003
  • 22. Fischer HB, List EJ, Koh RCY, Imberger J, Brooks NH (1979) Mixing in inland and coastal waters. Elsevier
  • 23. Gartner JW (2004) Estimating suspended solids concentrations from backscatter intensity measured by acoustic Doppler current profiler in San Francisco Bay. California Mar Geol 211(3–4):169–187. https://doi.org/10.1016/j.margeo.2004.07.001
  • 24. Gray JR, Gartner JW (2009) Technological advances in suspended-sediment surrogate monitoring. Water Resour Res. https://doi.org/10.1029/2008WR007063
  • 25. Gray JR, Glysson GD, Edward TE (2008) Suspended sediment samplers and sampling methods. In Sedimentation Engineering – Processes, Measurements, Modeling, and Practice, M. Garcia (eds), American Society of Civil Engineers Manual 110, ch. 5.3., American Society of Civil Engineers, Reston, Virginia, pp. 318–337.
  • 26. Guerrero M, Rüther N, Haun S, Baranya S (2017) A combined use of acoustic and optical devices to investigate suspended sediment in rivers. Adv Water Resour 102:1–12. https://doi.org/10.1016/j.advwatres.2017.01.008
  • 27. Guerrero M, Szupiany RN, Amsler ML (2011) Comparison of acoustic backscattering techniques for suspended sediments investigations. Flow Meas Instrum 22:392–401. https://doi.org/10.1016/j.flowmeasinst.2011.06.003
  • 28. Guerrero M, Rüther N, Szupiany RN (2012) Laboratory validation of acoustic Doppler current profiler (ADCP) techniques for suspended sediment investigations. Flow Meas Instrum 23:40–48. https://doi.org/10.1016/j.flowmeasinst.2011.10.003
  • 29. Guerrero M, Szupiany R, Latosinski F (2013) Multi-frequency acoustics for suspended sediment studies: An application in the Parana River. J Hydraul Res 51(6):696–707. https://doi.org/10.1080/00221686.2013.849296
  • 30. Guerrero M, Rüther N, Szupiany R, Haun S, Baranya S, Latosinski F (2016) The acoustic properties of suspended sediment in large rivers: consequences on ADCP methods applicability. Water 8:13. https://doi.org/10.3390/w8010013
  • 31. Haimann M, Liedermann M, Naderer A, Lalk P, Habersack H (2012) Integratives Schwebstoffmonitoringkonzept – Innovative Ansätze auf Basis direkter und indirekter Methoden. Österr Wasser- Und Abfallw 64:535–543. https://doi.org/10.1007/s00506-012-0038-2
  • 32. Haimann M, Liedermann M, Lalk P, Habersack H (2014) An integrated suspended sediment transport monitoring and analysis concept. Int J Sediment Res 29:135–148. https://doi.org/10.1016/S1001-6279(14)60030-5
  • 33. Haimann M, Hauer C, Tritthart M, Prenner D, Leitner P, Moog O, Habersack H (2018) Monitoring and modelling concept for ecological optimized harbour dredging and fine sediment disposal in large rivers. Hydrobiologia 814:89–107. https://doi.org/10.1007/s10750-016-2935-z
  • 34. Hauer C, Leitner P, Unfer G, Pulg U, Habersack H, Graf W (2018) The Role of Sediment and Sediment Dynamics in the Aquatic Environment. In Riverine Ecosystem Management, 1st ed., Schmutz, S., Sendzimir, J., Eds., Springer: Cham, Switzerland, Volume 8, pp. 151–169.
  • 35. Haught D, Venditti JG, Wright SA (2016) Calculation of in situ acoustic sediment attenuation using off-the-shelf horizontal ADCPs in low concentration settings. Water Resour Res 53:5017–5037. https://doi.org/10.1002/2016WR019695
  • 36. Joshi S, Jun XY (2018) Recent changes in channel morphology of a highly engineered alluvial river – the Lower Mississippi River. Phys Geogr 39(2):140–165. https://doi.org/10.1080/02723646.2017.1340027
  • 37. Landers MN (2012) Fluvial Suspended Sediment Characteristics By High-Resolution, Surrogate Metrics of Turbidity, Laserdiffraction, Acoustic Backscatter, and Acoustic Attenuation. Ph.D. Thesis, Georgia Institute of Technology, Atlanta, GA, USA.
  • 38. Landers MN, Straub TD, Wood MS, Domanski MM (2016) Sediment acoustic index method for computing continuous suspended-sediment concentrations: U.S. Geological Survey Techniques and Methods, book 3, chap. C5, 63 p. https://doi.org/10.3133/tm3C5
  • 39. Lane SN, Parsons DR, Best JL, Orfeo O, Kostaschuk RA, Hardy RJ (2008) Causes of rapid mixing at a junction of two large rivers: Río Paraná and Río Paraguay. Argentina. J Geophys Res 113:16. https://doi.org/10.1029/2006JF000745
  • 40. Latosinski FG, Szupiany RN, García CM, Guerrero M, Amsler ML (2014) Estimation of concentration and load of suspended bed sediment in a large river by means of acoustic doppler technology. J Hydraul Eng 140(7):15p. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000859
  • 41. Mackay JR (1970) Lateral mixing of the Liard and Mackenzie rivers downstream from their confluence. Can J Earth Sci 7:111–124. https://doi.org/10.1139/e70-008
  • 42. Matsui E, Salati F, Friedman I, Brinkman WLF (1976) Isotopic hydrology in the amazonia 2. relative discharges of the negro and solimões rivers through 18O concentrations. Water Resour Res 12:781–785. https://doi.org/10.1029/WR012i004p00781
  • 43. Mead AA, Demas CR, Ebersole BA, Kleiss BA, Little CD, Meselhe EA, Powell NJ, Pratt TC, Vosburg BM (2012) A water and sediment budget for the lower Mississippi-Atchafalaya River in flood years 2008–2010: implications for sediment discharge to the oceans and coastal restoration in Louisiana. J Hydrol 432:84–97. https://doi.org/10.1016/j.jhydrol.2012.02.020
  • 44. Moate BD, Thorne PD (2012) Interpreting acoustic backscatter from suspended sediments of different and mixed mineralogical composition. Cont Shelf Res 46:67–82. https://doi.org/10.1016/j.csr.2011.10.007
  • 45. Moore SA, Le Coz J, Hurther D, Paquier A (2012) On the application of horizontal ADCPs to suspended sediment transport surveys in rivers. Cont Shelf Res 46:50–63. https://doi.org/10.1016/j.csr.2011.10.013
  • 46. Moore SA, Le Coz J, Hurther D, Paquier A (2013) Using multi-frequency acoustic attenuation to monitor grain size and concetration of suspended sediment in rivers. J Acoust Soc Am 133(4):1959–1970. https://doi.org/10.1121/1.4792645
  • 47. Mossa J (1996) Sediment dynamics in the lowermost Mississippi River. Eng Geol 45(1–4):457–479. https://doi.org/10.1016/S0013-7952(96)00026-9
  • 48. Nones M (2019) Dealing with sediment transport in flood risk management. Acta Geophys 67:677–685. https://doi.org/10.1007/s11600-019-00273-7
  • 49. Park J, Batalla RJ, Birgand F, Esteves M, Gentile F, Harrington JR, Navratil O, López-Tarazón JA, Vericat D (2019) Influences of catchment and river channel characteristics on the magnitude and dynamics of storage and re-suspension of fine sediments in river beds. Water 11(5):878. https://doi.org/10.3390/w11050878
  • 50. Pomázi F, Baranya S (2020a) Comparative assessment of fluvial suspended sediment concentration analysis methods. Water 12(3):873. https://doi.org/10.3390/w12030873
  • 51. Pomázi F, Baranya S (2020b) New investigation methods of suspended sediment transport in large rivers 2–Comparative investigation of direct and indirect analysis methods In Hungarian. J Hung Hydr Soc 100(3):64–73
  • 52. Rai AK, Kumar A (2015) Continuous measurement of suspended sediment concentration: technological advancement and future outlook. Measurement 76:209–227. https://doi.org/10.1016/j.measurement.2015.08.013
  • 53. Rasmussen PP, Gray JR, Glysson GD, Ziegler AC (2009) Guidelines and procedures for computing time-series suspended-sediment concentrations and loads from in-stream turbidity-sensor and streamflow data: U.S. Geological Survey Techniques and Methods, book 3, chap. C4, 52 p
  • 54. Sassi MG, Hoitink AJF, Vermeulen B (2012) Impact of sound attenuation by suspended sediment on ADCP backscatter calibrations. Water Resour Res 48:1–14. https://doi.org/10.1029/2012WR012008
  • 55. Sequoia Scientific (2018) LISST-Portable|XR Manual Version 1.3. http://www.sequoiasci.com/wp-content/uploads/2015/06/LISST-PortableXR-Manual-Version-1_3.pdf. Accessed on 14 Oct 2021
  • 56. Sequoia Scientific (2016) How the LISST-ABS Works. Online article: https://www.sequoiasci.com/article/how-the-lisst-abs-works/ Accessed 1 Apr 2022
  • 57. Stallard RF (1987) Cross-channel mixing and its effect on sedimentation in the Orinoco River. Water Resour Res 23:1977–1986. https://doi.org/10.1029/WR023i010p01977
  • 58. Teledyne (2013) Workhorse H-ADCP Technical Specifications. Available online: http://www.teledynemarine.com/Lists/Downloads/hadcp_datasheet_lr.pdf. Accessed 1 Apr 2022
  • 59. Thorne PD, Meral R (2008) Formulations for the scattering properties of suspended sandy sediments for use in the application of acoustics to sediment transport processes. Cont Shelf Res 28:309–317. https://doi.org/10.1016/j.csr.2007.08.002
  • 60. Thorne PD, Hanes DM (2002) A review of acoustic measurement of small-scale sediment processes. Cont Shelf Res 22(4):603–632. https://doi.org/10.1016/S0278-4343(01)00101-7
  • 61. Thorne PD, Hurther D (2014) An overview on the use of backscattered sound for measuring suspended particle size and concentration profiles in non-cohesive inorganic sediment transport studies. Cont Shelf Res 73:97–118. https://doi.org/10.1016/j.csr.2013.10.017
  • 62. Thorne PD, Vincent CE, Hardcastle PJ, Rehman S, Pearson N (1991) Measuring suspended sediment concentrations using acoustic backscatter devices. Mar Geol 98:7–16. https://doi.org/10.1016/0025-3227(91)90031-X
  • 63. Topping DJ, Wright SA (2016) Long-term continuous acoustical suspended-sediment measurements in rivers—Theory, application, bias, and error: U.S. Geological Survey Professional Paper 1823, 98 p. http://dx.doi.org/https://doi.org/10.3133/pp1823.
  • 64. Urick RJ (1983) Principles of underwater sound, 3rd edn. McGraw-Hill, New York
  • 65. van Rijn LC (1984) Sediment transport, part I: bed load transport. J Hydraul Eng 110(10):1431–1456. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:10(1431)
  • 66. Venditti JG, Church M, Attard ME, Haught D (2015) Use of ADCPs for suspended sediment transport monitoring: an empirical approach. Water Resour Res 52:2715–2736. https://doi.org/10.1002/2015WR017348
  • 67. Wall GR, Nystrom EA, Litten, S (2006) Use of an ADCP to compute suspended-sediment discharge in the tidal Hudson River, New York: U.S. Geological Survey Scientific Investigations Report 2006–5055, 16 p
  • 68. Weibezahn FH (1983) Downstream natural mixing of water from the Orinoco, Atabapo and Guaviare rivers. Eos Trans AGU 64(45):699
  • 69. Wright S, Topping DT, Williams CA (2010) Discriminating silt-and-clay from suspended-sand in rivers using side-looking acoustic profilers. In Proceedings of the 2nd Joint Federal Interagency Sedimentation Conference
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-174c0b9a-9e66-454e-a33e-4439e9ba01ae
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.