PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research on reference frames and reference networks in Poland in 2019–2022

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents the reviewed and summarised research activities of Polish research groups on reference frames and reference networks in a period of 2019–2022. It contains the results on the implementation of latest resolutions on reference systems of the International Union of Geodesy and Geophysics and the International Astronomical Union focusing on changes in the consecutive issues of the Astronomical Almanac of the Institute of Geodesy and Cartography, Warsaw. It further presents the status of the implementation of the European Terrestrial Reference System 1989 (ETRS89) in Poland, monitoring the terrestrial reference frame, including research on global terrestrial reference frames, GNSS data analysis within the EUREF Permanent Network, research on GNSS receiver antenna phase centres, research on impact of non-tidal loading effects on position solutions, and on station velocities. Then the activities concerning the realization of ITRS and ETRS89 in Poland are discussed, including operational work of GNSS IGS/EPN stations as well as operational work of the laser ranging station of the International Laser Ranging Service, with special emphasis on the Polish active GNSS network for the realization of ETRS89 and maintenance of the vertical control network. Extensive research activities are observed in the field of implementation of the International Terrestrial Gravity Reference Frame in Poland, maintenance and modernization of gravity control network in Poland but also in Sweden, establishment of gravity control network in Ireland based on absolute gravity survey as well as maintenance of the national magnetic control network in Poland which is traditionally performed on a regular basis.
Rocznik
Strony
art. no. e44, 2023
Opis fizyczny
Bibliogr. 74 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Geodesy and Cartography, Warsaw, Poland
  • Warsaw University of Technology, Warsaw, Poland
Bibliografia
  • 1. Araszkiewicz, A., Podkowa, A. and Kiliszek, D. (2019). Height variation depending on the source of antenna phase centre corrections: LEIAR25.R3 case study. Sensors, 2019, 19(18), 4010. DOI: 10.3390/s19184010.
  • 2. Araszkiewicz, A. and Kiliszek, D. (2020). Impact of Using GPS L2 Receiver Antenna Corrections for the Galileo E5a Frequency on Position Estimates. Sensors, 20, 5536. DOI: 10.3390/s20195536.
  • 3. Bogusz, J., Klos, A., and Pokonieczny, K. (2019). Optimal Strategy of a GPS Position Time Series Analysis for Post-Glacial Rebound Investigation in Europe. Remote Sens., 11, 1209. DOI: 10.3390/rs11101209.
  • 4. Borowski, L., Kudrys, J., Kubicki, B. et al. (2022). Phase Centre Corrections of GNSS Antennas and Their Consistency with ATX Catalogues. Remote Sens., 14, 3226. DOI: 10.3390/rs14133226.
  • 5. Bury, G., Sosnica, K., and Zajdel, R. (2019). Impact of the Atmospheric Non-tidal Pressure Loading on Global Geodetic Parameters Based on Satellite Laser Ranging to GNSS. IEEE Trans. Geosci. Remote Sens., 57(6), 3574-3590. DOI: 10.1109/TGRS.2018.2885845.
  • 6. Bury, G., Sosnica, K., Zajdel, R. et al. (2021a). Determination of precise Galileo orbits using combined GNSS and SLR observations. GPS Solut., 25, 11. DOI: 10.1007/s10291-020-01045-3.
  • 7. Bury, G., Sosnica, K., Zajdel, R. et al. (2021b). Geodetic datum realization using SLR-GNSS colocation onboard Galileo and GLONASS. J. Geophys. Res. Solid Earth, 126, e2021JB022211. DOI: 10.1029/2021JB022211.
  • 8. Dach, R., Lutz, S., Walser, P. et al. (2015). Bernese GNSS Software Version 5.2. DOI: 10.7892/boris.72297.
  • 9. Dawidowicz, K., Rapinski, J., Smieja, M. et al. (2021). Preliminary Results of an Astri/UWM EGNSS Receiver Antenna Calibration Facility. Sensors, 21. DOI: 10.3390/s21144639.
  • 10. Dawidowicz, K., Krzan, G., and Wielgosz, P. (2023). Offsets in the EPN station position time series resulting from antenna/radome changes: PCC type-dependent model analyses. GPS Solut., 27, 9. DOI: 10.1007/s10291-022-01339-8.
  • 11. Dykowski, P., Kane, P., Krynski, J. et al. (2019a). Towards the establishment of the Absolute Gravity Network Ireland. In: Symposium of the IAG Subcommission for Europe (EUREF), 22–24 May 2019, Tallinn, Estonia.
  • 12. Dykowski, P., Krynski, J., Sekowski, M. et al. (2019b). Establishment of the Absolute Gravity Network Ireland – first results. In: 5th IAG Symposium on Terrestrial Gravimetry: Static and Mobile Measurements TG-SMM, 1–4 October 2019, St. Petersburg, Russia.
  • 13. Dykowski, P., Krynski, J. and Sekowski, M. (2019c). A 3 year-long AG/SG gravity time series at Borowa Gora Geodetic Geodetic-Geophysical Observatory. In: 27th IUGG General Assembly 2019, 8–18 July 2019, Montreal, Canada.
  • 14. Dykowski, P., Karkowska, K., Sekowski, M. et al. (2021). Ocean tidal loading models assessment using 28 months of gravimetric tidal records in Dublin, Ireland. In: EGU General Assembly 2021, 19–30 April 2021, Vienna, Austria.
  • 15. Dykowski, P., Krynski, J., Sekowski, M. et al. (2022). Establishment of a modern gravity control in Ireland. In: IGRF2022 Workshop, 11–13 April 2022, Leipzig, Germany.
  • 16. Engfeldt, A., Lidberg, M., Sekowski, M. et al. (2019). RG 2000 – the new gravity reference frame of Sweden. Geophys., 54(1), 69–92.
  • 17. Falk, R., Pálinkáš, V., Wziontek, H. et al. (2020). Final report of EURAMET.M.G-K3 regional comparison of absolute gravimeters. Metrologia, 57, 1A. DOI: 10.1088/0026-1394/57/1A/07019.
  • 18. Fernandes, R., Bruyninx, C., Crocker, P. et al. (2022). A new European service to share GNSS Data and Products. Ann. Geophys., 65, 3, DM317,2022. DOI: 10.4401/ag-8776.
  • 19. Godah, W., Szelachowska, M., Ray, J.D. et al. (2019). A model of temporal mass variations within the Earth system developed using GRACE and GNSS data. In: 27 IUGG General Assembly 2019, 8–18 July 2019, Montreal, Canada.
  • 20. Godah, W., Szelachowska, M., Krynski, J. et al. (2020a). Assessment of temporal variations of orthometric/normal heights induced by hydrological mass variations over large river basins using GRACE mission data. Remote Sens., 12(18), 3070. DOI: 10.3390/rs12183070.
  • 21. Godah, W., Szelachowska, M., Ray, J.D. et al. (2020b). Comparison of vertical deformations of the Earth’s surface obtained using GRACE-based GGMs and GNSS data – A case study of South-Eastern Poland. Acta Geodyn. et Geomater., 17, 2(198), 169–176. DOI: 10.13168/AGG.2020.0012.
  • 22. Godah, W., Ray, J.D., Szelachowska, M. et al. (2020c). The use of national GNSS CORS networks for the determination of temporal mass variations within the Earth’s system as well as for improving GRACE/GRACE-FO solutions – a case study of Poland. Remote Sens., 12(20), 3359. DOI: 10.3390/rs12203359.
  • 23. Godah, W., Szelachowska, M., and Krynski, J. (2021). On the dynamics of physical heights and their use for the determination of accurate orthometric/normal heights. In: EGU General Assembly 2021, 19–30 April, Vienna, Austria.
  • 24. GUGiK (2023). GUGiK Bulletin No 4 – March 2023 (in Polish). https://www.gov.pl/web/gugik/wydanie-4—marzec-2023.
  • 25. Jagoda, M., and Rutkowska, M. (2020a). Use of VLBI measurement technique to determination of the tectonic plates motion parameters. Metrology and Measurements Systems, 27(1), 151–165. DOI: 10.24425/mms.2020.131722.
  • 26. Jagoda, M., and Rutkowska, M. (2020b). An Analysis of the Eurasian Tectonic Plate Motion Parameters Based on GNSS Stations Positions in ITRF2014. Sensors, 20(21), 6065. DOI: 10.3390/s20216065.
  • 27. Jagoda, M., Rutkowska, M., Suchocki, C. et al. (2020a). Determination of the tectonic plates motion parameters based on SLR, DORIS and VLBI stations positions. J. Appl. Geod., 14(2), 121–131. DOI: 10.1515/jag-2019-0053.
  • 28. Jagoda, M., Rutkowska, M., Lejba, P. et al. (2020b). Satellite Laser Ranging for Retrieval of the Local Values of the Love h2 and Shida l2 Numbers for the Australian ILRS Stations. Sensors, 20(23), 6851. DOI: 10.3390/s20236851.
  • 29. Kaczmarek, A. (2019). Influence of Geophysical Signals on Coordinate Variations GNSS Permanent Stations in Central Europe. Artificial Satellites, Journal of Planetary Geodesy, 54(3), 57–71. DOI: 10.2478/arsa-2019-0006.
  • 30. Kenyeres, A., Bellet, J.G., Bruyninx, C. et al. (2019). Regional integration of long-term national dense GNSS network solutions. GPS Solut., 23, 122. DOI: 10.1007/s10291-019-0902-7.
  • 31. Klos, A., Bos, M.S., Fernandes, R.M.S. et al. (2019a). Noise-Dependent Adaption of the Wiener Filter for the GPS Position Time Series. Math. Geosci., 51, 53–73. DOI: 10.1007/s11004-018-9760-z.
  • 32. Klos, A., Kusche, J., Fenoglio-Marc, L., Bos, M.S., Bogusz, J. (2019b). Introducing a vertical land motion model for improving estimates of sea level rates derived from tide gauge records affected by earthquakes. GPS Solut., 23, 102 (2019). DOI: 10.1007/s10291-019-0896-1.
  • 33. Klos, A., Dobslaw, H., Dill, R. and Bogusz, J. (2021). Identifying the sensitivity of GPS to non-tidal loadings at various time resolutions: examining vertical displacements from continental Eurasia. GPS Solut., 25, 89. DOI: 10.1007/s10291-021-01135-w.
  • 34. Konacki, M., Malacz, A., Chimicz, A. et al. (2019). Optical, Laser and Processing Capabilities of the New Polish Space Situational Awareness Centre. In: Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS), 17–20 September.
  • 35. Kowalczyk, K. (2019). Changes in mean sea level on the Polish coast of the Baltic sea based on tide gauge data from the years 1811–2015. Acta Geodyn. et Geomater., 16(2), 194. DOI: 10.13168/AGG.2019.0016.
  • 36. Kowalczyk, K., Kowalczyk, A.M., and Chojka, A. (2020). Modeling of the vertical movements of the Earth’s crust in Poland with the co-kriging method based on various sources of data. Appl. Sci., 10, 9. DOI: 10.3390/app10093004.
  • 37. Kowalczyk, K., Kowalczyk, A.M., and Rapinski, J. (2021a). Identification of common points in hybrid geodetic networks to determine vertical movements of the Earth’s crust. J. Appl. Geod., 15(2). DOI: 10.1515/jag-2021-0002.
  • 38. Kowalczyk, K., Pajak, K., Wieczorek, B. et al. (2021b). An Analysis of Vertical Crustal Movements along the European Coast from Satellite Altimetry, Tide Gauge, GNSS and Radar Interferometry. Remote Sens., 13, 2173. DOI: 10.3390/rs13112173.
  • 39. Krynski, J., and Rogowski, J.B. (2019). National Report of Poland to EUREF 2019. In: Symposium of the IAG Subcommission for Europe (EUREF), 22–24 May 2019, Tallinn, Estonia.
  • 40. Krynski, J., and Sekowski, M. (2019). Rocznik Astronomiczny na rok 2020. Instytut Geodezji i Kartografii, Warszawa.
  • 41. Krynski, J., Rogowski, J.B., and Liwosz, T. (2019a). Research on reference frames and reference networks in Poland in 2015–2018. Geod. Cartogr., 68(1). DOI: 10.24425/gac.2019.126093.
  • 42. Krynski, J., Dykowski, P., and Olszak, T. (2019b). Research on gravity field modelling and gravimetry in Poland in 2015–2018. Geod. Cartogr., 68(1). DOI: 10.24425/gac.2019.126094.
  • 43. Krynski, J., Olszewska, D., Gorka-Kostrubiec, B. et al. (2019c). EPOS PL Polish national infrastructure fulfilling European Plate Observing System goals. In: 27th IUGG General Assembly 2019, 08–18 July 2019, Montreal, Canada.
  • 44. Krynski, J., and Sekowski, M. (2020). Rocznik Astronomiczny na rok 2021. Instytut Geodezji i Kartografii, Warszawa, http://www.igik.edu.pl/pl/a/Rocznik-Astronomiczny-2021.
  • 45. Krynski, J., and Rogowski, J.B. (2021). National Report of Poland to EUREF 2019-2020. In: Symposium of the IAG Subcommission for Europe (EUREF), 26–28 May 2021, Ljubliana, Slovenia.
  • 46. Krynski, J., and Sekowski, M. (2021). Rocznik Astronomiczny na rok 2022. Instytut Geodezji i Kartografii, Warszawa, http://www.igik.edu.pl/pl/a/Rocznik-Astronomiczny-2022.
  • 47. Krynski, J., and Sekowski, M. (2022). Rocznik Astronomiczny na rok 2023. Instytut Geodezji i Kartografii, Warszawa, http://www.igik.edu.pl/pl/a/Rocznik-Astronomiczny-2023.
  • 48. Krynski, J., Dykowski, P., Godah, W. et al. (2023). Research on gravity field modelling and gravimetry in Poland in 2019–2022. Adv. Geod. Geoinf., 72(2), e46. DOI: 10.24425/agg.2023.146158.
  • 49. Krzan, G., Dawidowicz, K., and Wielgosz, P. (2020). Antenna phase center correction differences from robot and chamber calibrations: the case study LEIAR25. GPS Solut., 24, 44. DOI: 10.1007/s10291-020-0957-5.
  • 50. Legrand, J. (2022). EPN multi-year position and velocity solution CWWWW. Retrieved 01 March, 2023 from Royal Observatory of Belgium. DOI: 10.24414/ROB-EUREF-CWWWW.
  • 51. Lejba, P., Suchodolski, T., and Michalek, P. (2020). Laser Ranging to Space Debris in Poland: Tracking and Orbit Determination. In: Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS), 15–18 September 2020.
  • 52. Lenczuk, A., Leszczuk, G., Klos, A. et al. (2020). Study on the inter-annual hydrology-induced deformations in Europe using GRACE and hydrological models. J. Appl. Geod., 14(4). DOI: 10.1515/jag-2020-0017.
  • 53. Liwosz, T., and Ryczywolski, M. (2016). Verification of the Polish geodetic reference frame by means of a new solution based on permanent GNSS data from the years 2011–2014. Rep. Geod. Geoinf., 102. DOI: 10.1515/rgg-2016-0027.
  • 54. Liwosz, T., and Araszkiewicz, A. (2019a). Report of the EPN Analysis Centres Coordinator. Inclusion of Galileo observations in EPN coordinate products. In: Symposium of the IAG Subcommission for Europe (EUREF), 22–24 May 2019, Tallinn, Estonia.
  • 55. Liwosz, T., and Araszkiewicz, A. (2019b). EPN Analysis Centres Coordinator Report. In: EPN Analysis Center Workshop, 16–17 October 2019, Warsaw, Poland.
  • 56. Liwosz, T. (2022a). EPN daily and weekly combined position solutions. Warsaw University of Technology, Poland. DOI: 10.17388/WUT-EUREF-CMBPOS.
  • 57. Liwosz, T. (2022b). Report of EPN Analysis Centres Coordinator: status of EPN coordinate products and preparations for the switch to IGS20. EPN Analysis Centres Workshop, November 3, 2022. http://www.epncb.eu/_newseventslinks/workshops/EPNLACWS_2022/pdf/Liwosz_ACC_report_AC_workshop.pdf.
  • 58. Liwosz, T., and Araszkiewicz, A. (2022). Report of the EPN Analysis Centres Coordinator. In: Symposium of the IAG Subcommission for Europe (EUREF), 31 May – 03 June 2022, Zagreb, Croatia.
  • 59. Liwosz, T., and Dykowski, P. (2022). National Report of Poland to EUREF 2022. In: Symposium of the IAG Sub-commission for Europe (EUREF), 31 May – 03 June 2022, Zagreb, Croatia.
  • 60. Najder, J. (2020). Automamatic detection of discontinuities in the station position time series of the reprocessed global GNSS network using Bernese GNSS Software. Acta Geodyn. et Geomater., 17(4), 439–451. DOI: 10.13168/AGG.2020.0032.
  • 61. Pajak, K., Kowalczyk, K., Kaminski, J. et al. (2021). Studying the sensitivity of satellite altimetry, tide gauge and GNSS observations to changes in vertical displacements. Geomatics Environ. Eng., 15(4). DOI: 10.7494/geom.2021.15.4.45.
  • 62. Schillak, S., Lejba, P., and Michalek, P. (2021). Analysis of the Quality of SLR Station Coordinates Determined from Laser Ranging to the LARES Satellite. Sensors, 21(3), 737. DOI: 10.3390/s21030737.
  • 63. Schillak, S., Lejba, P., Michalek, P. et al. (2022). Analysis of the Results of the Borowiec SLR Station (7811) for the period 1993-2019 as an Example of the Quality Assessment of Satellite Laser Ranging Stations. Sensors, 22(2), 616. DOI: 10.3390/s22020616.
  • 64. Schueller, K. (2015). Theoretical basis for Earth Tide analysis with the new ETERNA34-ANA-V4.0 program. Bull.Inf. Marées Terrestres, 149, 12024–12061.
  • 65. Smaglo, A., Lejba, P., Schillak, S. et al. (2021). Measurements to Space Debris in 2016–2020 by Laser Station at Borowiec Poland. Artificial Satellites, Journal of Planetary Geodesy, 56(4), 119–134. DOI: 10.2478/arsa-2001-0009.
  • 66. Sosnica, K., Bury, G., Zajdel, R. et al. (2019). Estimating global geodetic parameters using SLR observations to Galileo, GLONASS, BeiDou, GPS, and QZSS. Earth Planets Space, 71(20), 1–11. DOI: 10.1186/s40623-019-1000-3.
  • 67. Strugarek, D., Sosnica, K., Arnold, D. et al. (2019). Determination of Global Geodetic Parameters Using Satellite Laser Ranging Measurements to Sentinel-3 Satellites. Remote Sens., 11(19), 2282. DOI: 10.3390/rs11192282.
  • 68. Suchodolski, T. (2019). CBK PAS Borowiec Second Satellite Tracking System. ILRS Technical Work-shop in Stuttgart, Germany, 21–25 October. Retrieved from https://cddis.nasa.gov/2019_Technical _Workshop/Program/index.html.
  • 69. Szelachowska, M., Godah, W., and Krynski, J. (2022a). On the need of considering temporal variations of or-thometric/normal heights induced by mass transport in the Earth’s system for precise levelling. In: NKG Working Groups GEO & FHSG, 14–18 March, Gävle, Sweden.
  • 70. Szelachowska, M., Godah, W., and Krynski, J. (2022b). Contribution of GRACE satellite mission to the determi-nation of orthometric/normal heights corrected for their dynamics – A case study of Poland. Remote Sens., 14(17), 19. DOI: 10.3390/rs14174271.
  • 71. Wziontek, H., Bonvalot, S., Falk, R. et al. (2021). Status of the International Gravity Reference System and Frame. J. Geod. 95, 7. DOI: 10.1007/s00190-020-01438-9.
  • 72. Zajdel, R., Sosnica, K., Dach, R. et al. (2019a). Network effects and handling of the geocenter motion in multi-GNSS processing. J. Geophys. Res. Solid Earth, 124(6), 5970–5989. DOI: 10.1029/2019JB017443.
  • 73. Zajdel, R., Sosnica, K., Drozdzewski, M. et al. (2019b). Impact of network constraining on the terrestrial reference frame realization based on SLR observations to LAGEOS. J. Geod., 93(11), 2293–2313. DOI: 10.1007/s00190-019-01307-0.
  • 74. Zajdel, R., Steigenberger, P., and Montenbruck, O. (2022). On the potential contribution of BeiDou-3 to the realization of the terrestrial reference frame scale. GPS Solut., 26(109), 1–18. DOI: 10.1007/s10291-022-01298-0.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-17480481-ce4b-4fbe-b595-37de5bba081f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.