PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evolution of Neoarchean-Paleoproterozoic basement in the Brunovistulia terrane, S Poland : geological, P-T and geochemical records

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Brunovistulia is a composite terrane of Gondwana descent that eventually was accreted to the SW margin of Baltica, central Europe. It is built of metagneous and metasedimentary rocks that originated mainly between 650 and 550 Ma. However in the Upper Silesian part of Brunovistulia, much older fragments have been drilled, which yielded U-Pb zircon ages between 2.75 and 2.0 Ga. They have been interpreted as an “exotic” constituent of the Brunovistulia superterrane, named the Rzeszotary Terrane. Our geological and geochemical studies of the Rzeszotary borehole cores yielded new data on the composition, provenance and evolution of that terrane. Precursors of the Rzeszotary complex were separated from the depleted mantle prior to or around 3.2-3.0 Ga. At 2.75-2.6 Ga, a juvenile magmatic arc edifice formed, beneath which oceanic lithosphere was subducted. Decompression melting of the mantle brought about tholeiite magmas of IAT/MORB composition with LILE additions. Tonalitic and trondhjemitic precursors of gneisses present today were formed at that time, probably due to partial melting of mantle-derived wet basalts at the base of the island arc. Around 2.0 Ga, the arc collided with an unspecified cratonic mass and was subject to orogenic deformation, metamorphism and migmatization. The entire arc edifice was then strongly shortened and forced down to depths equivalent to ~6-12 kbar where the rocks underwent contractional deformation and metamorphism (~500-700°C). Tonalites and trondhjemites were changed to gneisses, and basites to epidote- and garnet amphibolites. These rocks underwent syntectonic migmatization through the mechanism of segregation/differentiation in the presence of fluids and incipient partial melting. Synmetamorphic shortening of the rock pile, which led to folding and heterogeneous development of shear zones with thrust kinematics, terminated with intrusions of K-granites at 2.0 Ga, being followed by some brittle-ductile deformation of unconstrained timing. The 2.0 Ga event may have been connected with the 2.1-1.8 Ga global amalgamation of the Paleoproterozoic supercontinent of Columbia. Later the future Rzeszotary terrane was detached from the Gondwana mainland, reassembled and eventually, in the Neoproterozoic, it became part of the foreland of the Cadomian Orogen in Central Europe.
Słowa kluczowe
Rocznik
Strony
art. no. 20
Opis fizyczny
Bibliogr. 89 poz., fot., rys., wykr.
Twórcy
  • Polish Academy of Sciences, Institute of Geological Sciences (ING PAS), Podwale 75, 50-449 Wrocław, Poland
  • Polish Academy of Sciences, Institute of Geological Sciences (ING PAS), Podwale 75, 50-449 Wrocław, Poland
Bibliografia
  • 1. Adam, J., Rushmer, T., O'Neil, J., Francis, D., 2012. Hadean greenstones from the Nuvvuagittuq fold belt and the origin of the Earth's early continental crust. Geology, 40: 363-366.
  • 2. Ashworth, J.R. (ed.), 1985. Migmatites. Blackie & Son.
  • 3. Ashworth, J.R., McLellan, M.C., 1985. Textures. In: Migmatites (ed. J.R. Ashworth): 180-203. Blackie & Son.
  • 4. Barker, F., 1979. Trondhjemite: definition, environment and hypotheses of origin. Developments in Petrology, 6: 1-11.
  • 5. Barker, F., Arth, J.G., 1976. Generation of trondhjemitic-tonalitic liquids and Archean bimodal trondhjemite-basalt suites. Geology, 4: 596-600.
  • 6. Batchelor, R.A., Bowden, P., 1985. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chemical Geology, 48: 43-55.
  • 7. Bea, F., Fersthater, G., Corretgé, L.G., 1992. The geochemistry of phosphorus in granite rocks and the effect of aluminium. Lithos, 29: 43-56.
  • 8. Blundy, J.D., Holland, T.J.B., 1990. Calcic amphibole equilibria and a new amphibole-plagioclase geothermometer. Contributions to Mineralogy and Petrology, 104: 208-224.
  • 9. Buła, Z., 2000. Lower Paleozoic of Upper Silesia and West Małopolska. (in Polish with English summary). Prace Państwowego Instytutu Geologicznego, 171: 1-63.
  • 10. Burtan, J., 1962. Borehole Rzeszotary 2 (in Polish with English summary). Kwartalnik Geologiczny, 6 (2): 245-259.
  • 11. Cattell, A.C., Taylor. R.N. 1990. Archaean basic magmas. In: Early Precambrian basic magmatism (eds. R.P. Hall and D.J. Hughes): 36-37. Glasgow and London, Blackie.
  • 12. Cieśla, E., Wybraniec, S., Petecki, Z., 1993. Mapa magnetyczna Polski w skali 1:200 000 z komputerowym bankiem danych (in Polish). Centr. Arch. Geol. Państwowy Instytut Geologiczny, Warszawa.
  • 13. Condie, K., 1989. Plate Tectonics and Crustal Evolution. Pergamon Press, Oxford.
  • 14. Cook, Y.A., Sanislav, I.V., Hammerli, J., Blenkinsop, T.G., Dirks, P.H.G.M., 2016. A primitive mantle source for the Neoarchean mafic rocks from the Tanzania Craton. Geoscience Frontiers, 7: 911-9260.
  • 15. Cox, K.G., Bell, J.D., Pankhurst, R.J., 1979. The Interpretation of Igneous Rocks. Allen and Unwin, London.
  • 16. DePaolo, D.J., Wasserburg, G.J., 1976. Nd isotopic variations and petrogenetic models. Geophysical Research Letters, 3: 249-252.
  • 17. Dudás, F.O., 1992. Petrogenetic evolution of trace element discrimination diagrams. Basement Tectonics, 8: 93-127.
  • 18. Dudek, A., 1980. The crystalline basement block of the Outer Carpathians in Moravia: Bruno-Vistulicum. Rozpravy České Akademie Věd, Řada mathematicko-přirodovědeckych Věd, 90: 1-85.
  • 19. Finger, F., Frasl, G., Dudek, A., Jelínek, E., Thöni, M., 1995. Cadomian plutonism in the Moravosilesian basement. In: Tectonostratigraphic EvoIution of the Central and East European Orogens (eds. R.D. Dallmeyer, W. Franke and K. Weber): 495-507. Springer, Heidelberg.
  • 20. Finger, F., Hanžl, P., Pin, C., Von Quadt, A., Steyrer, H.P., 2000. The Brunovistulian: Avalonian Precambrian sequence at the eastern and of the Central European Variscides? Geological Society Special Publications, 179: 103-112.
  • 21. Friedl, G., Finger, F., Mcnaughton, N.J., Fletcher, I.R., 2000. Deducing the ancestry of terranes: SHRIMP evidence for South America-derived Gondwana fragments in central Europe. Geology, 28: 1035-1038.
  • 22. Frost, R.B., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J., Frost, C.D., 2001. A geochemical classification of granitic rocks. Journal of Petrology, 42: 2033-2048.
  • 23. Goldstein, S.L., 1988. Decoupled evolution of Nd and Sr isotopes in the continental crust. Nature, 336: 73-738.
  • 24. Goldstein, S.L., O'Nions, R.K., Hamilton, P.J., 1984. A Sm-Nd study of atmospheric dusts and particulates from major river systems. Earth and Planetary Science Letters, 70: 221-236.
  • 25. Gribble, R.F., Stern, R.J., Bloomer, S., Stuben, D., Ohearn, T., Newman, S., 1996. MORB mantle and subduction components interact to generate basalts in the southern Mariana through back-arc basin. Geochimica et Cosmochimica Acta, 60: 2153-2166.
  • 26. Hammarstrom, J.M., Zen, E-an, 1986. Aluminum in hornblende: an empirical igneous geobarometer. American Mineralogist, 71: 1297-1313.
  • 27. Harrison, T.M., Watson, E.B., 1983. Kinetics of zircon dissolution and zirconium diffusion in granitic melts of variable water content. Contributions to Mineralogy and Petrology, 84: 66-72.
  • 28. Hawkesworth, C.J., O'Nions, R.K., Pankhurst, R.J., Hamilton, P.J., Evensen, N.M., 1997. A geochemical study of island-arc and back-arc tholeiites from the Scotia sea. Earth Planetary Letters, 36: 253-262.
  • 29. Hawthorne, F.C., Oberti, R., Harlow, G.E., Maresch, W.V., Martin, R.F., Schumacher, J.C., Welch, M.D., 2012. Nomenclature of amphibole supergroup. American Mineralogist, 97: 20131-2048.
  • 30. Haydutov, I., Yanev, S., 1995. The Protomoesian microcontinent of the Balkan Peninsula - a peri-Gondwanaland piece. Tectonophysics, 272: 303-313.
  • 31. Heflik, W., Konior, K., 1974. The present state of knowledge concerning the crystalline basement in the Cieszyn-Rzeszotary area (in Polish with English summary). Biuletyn Instytutu Geologicznego, 273: 195-221.
  • 32. Herzberg, C., Asimow, P.D., 2008. Petrology of some oceanic island basalts: PRI-MELT2. XLS software for primary magma calculation. Geochemistry, Geophysics, Geosystems, 9: 1-25.
  • 33. Holland, T., Blundy, J., 1994. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contribution to Mineralogy and Petrology, 116: 433-447.
  • 34. Holland, T.J.B., Powell, R., 1998. An internally consistent thermodynamic data set for phases of petrological interest. Journal of Metamorphic Geology, 16: 309-343.
  • 35. Irvine, T.N., Baragar, W.R.A., 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8: 523-548.
  • 36. Janoušek, V., Farrow, C.M., Erban, V., 2006. Interpretation of whole-rock geochemical data in igneous geochemistry: introducing Geochemical Data Toolkit (GCDkit). Journal of Petrology, 47: 1255-1259; GCDkit 3.0 v. 2013.
  • 37. Jastrzębski, M., Żelaźniewcz, A., Sláma, J., Machowiak, K, Śliwiński, M., Budzyń, B., Jaźwa, A., Kocjan, I., 2021. Provenance of Precambrian basement of the Brunovistulian Terrane: new data from its Silesian part (Czech Republic, Poland), central Europe, and implications for Gondwana break-up. Precambrian Research, doi.org/10.1016/j.precamres.2021.106108.
  • 38. Jensen, L.S., 1976. A new cation plot for classifying subalkalic volcanic rocks. Ontario Division of Mines Miscellaneous Paper, 62: 1-22.
  • 39. Jung, S., Pfänder, J.A., 2007. Source composition and melting temperatures of orogenic granitoids - constraints from CaO/Na2O, Al2O3/TiO2 and accessory mineral saturation thermometry. European Journal of Mineralogy, 19: 859-870.
  • 40. Kalvoda, J., Bábek, O., 2010. The margins of Laurussia in central and southeast Europe and southwest Asia. Gondwana Research, 17: 526-545.
  • 41. Kalvoda, J., Leichmann, J., Bábek, O., Melichar, R., 2003. Brunovistulian terrane (Central Europe) and Istanbul Zone (NW Turkey): Late Proterozoic and Paleozoic tectonostratigraphic development and paleogeography. Geologica Carpathica, 54: 139-152.
  • 42. Kalvoda, J., Bábek, O., Fatka, O., Leichmann, J., Melichar, R., Nehyba, S., Spacek, P., 2008. Brunovistulian terrane (Bohemian Massif, Central Europe) from late Proterozoic to late Paleozoic: a review. International Journal of Earth Sciences, 97: 497-518.
  • 43. Konior, K., 1974. Geological structure of the Rzeszotary elevation in the light of recent geophysical and drilling data (in Polish with English summary). Annales Societatis Geologorum Poloniae, 44: 321-375.
  • 44. Królikowski C., Petecki, Z., 1995. Gravimetric Atlas of Poland. Państwowy Instytut Geologiczny, Warszawa.
  • 45. Leake, B., Woolley, A.R., William, C.E.S., Birch, D., Gilbert, M.C., Grice, J.D., Hawthorne, F.C., Hanan J., Kisch, H.J., Krivovichev, V.G., Linthout, K., Mandarino, J.A., Maresch, W.V., Nickel, E.H., Rock, N.M.S., Schumacher, J.C., Smith, D.C., Stephenson, N.C.N., Ungaretti, L., Whittaker, E.J.W., Youzhi, G., 1997. Nomenclature of amphiboles; Report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. The Canadian Mineralogist, 35: 219-246.
  • 46. Martin, H., 1999. Adakitic magmas: modern analogues of Archaean granitoids. Lithos, 46: 411-429.
  • 47. Martin, H., Smithies, R.H., Rapp, R.P., Moyen, J.-F., Champion, D.C., 2005. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG) and sanukitoid: relationships and some implications for crustal evolution. Lithos, 79: 1-24.
  • 48. Mehnert, K.R., 1968. Migmatites and the Origin of Granitic Rocks. Elsevier, Amsterdam, New York.
  • 49. Miller, D.M., Goldstein, S.L., Langmuir, C.H., 1994. Cerium/lead and lead isotope ratios in arc magmas and the enrichment of lead in the continents. Nature, 368: 514-520.
  • 50. Mohan, M.R., Kamber, B.S., Piercey, S.J., 2008. Boran and arsenic in highly evolved Archean felsic rocks: implications for Archean subduction processes. Earth and Planetary Science Letters, 274: 479-488.
  • 51. Moyen, J.-F., Martin, H., 2012. Forty years of TTG research. Lithos, 148: 312-336.
  • 52. Mullen, E.D., 1983. MnO/TiOz/ PzOs: a minor element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis. Earth Planetary Science Letters, 62: 5-62.
  • 53. Nakamura, N., 1974. Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Ceochim. Cosmochim. Acta, 38: 757-775.
  • 54. Nawrocki, J., Żylińska, A., Buła, Z., Grabowski, J., Krzywiec, P., Poprawa, P., 2004. Early Cambrian location and affinities of the Brunovistulian terrane (Central Europe) in the light of palaeomagnetic data. Journal of the Geological Society, 161: 513-522.
  • 55. Nowak, J., 1927. Zarys geologii Polski (in Polish). II Zjazd Stowarzyszenia Geologów i Etnografów. Kraków.
  • 56. Oberc-Dziedzic, T., Kryza, R., Klimas, K., Fanning, M.C., 2003. SHRIMP U/Pb zircon geochronology of the Strzelin gneiss, SW Poland: evidence for a Neoproterozoic thermal event in the Fore-Sudetic Block, Central European Variscides. International Journal of Earth Sciences, 92: 701-711.
  • 57. O'Connor, J.T., 1965. A classification for quartz-rich igneous rocks based on feldspar ratios. U.S. Geological Survey Professional Paper, 525: 79-84.
  • 58. Pearce, J.A., 1983. Role of the sub-continental lithosphere in magma genesis at active continental margins. In: Continental Basalts and Mantle Xenoliths (eds. C.J. Hawkesworth and M.J. Norry): 230-249. Shiva, Nantwich.
  • 59. Pearce, J.A., 1996. A user's guide to basalt discrimination diagrams. Geological Association of Canada, Short Course Notes, 12: 79-113.
  • 60. Pearce, J.A., 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100: 14-48.
  • 61. Pearce, J.A., Cann, J.R., 1973. Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and Planetary Science Letters, 19: 290-300.
  • 62. Pearce, J.A., Norry, M.J., 1979. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contributions to Mineralogy and Petrology, 69: 33-47.
  • 63. Petrascheck, W., 1909. Ergebnisse neuer Aufschlüsse im Randgebiete des galizischen Karbons. Verhandlungen der Geologischen Bundesanstalt, 16: 366-378.
  • 64. Plyusnina, L.P., 1982. Geothermometry and geobarometry of plagioclase-hornblende bearing assemblages. Contributions to Mineralogy and Petrology, 80: 140-146.
  • 65. Ravna, E.J.K., 2000. Distribution of Fe and Mg between coexisting garnet and hornblende in synthetic and natural systems: an empirical calibration of the garnet-hornblende Fe-Mg geothermometer. Lithos, 53: 265-277.
  • 66. Saccani, E., 2015. A new method of discriminating different types of post-Archean ophiolitic basalts and their tectonic significance using Th-Nb and Ce-Dy-Yb systematics. Geoscience Frontiers, 6: 481-501.
  • 67. Saunder, A.D., Tarney, J., 1984. Geochemical characteristics of basaltic volcanism within back-arc basins. Geological Society Special Publications, 16: 59-76.
  • 68. Sawyer, E.W., 2008. Atlas of Migmatites. The Canadian Mineralogist, Special Publication 9, NRC Research Press, Ottawa, Ontario, Canada.
  • 69. Schandl, E.S., Gorton, M.P., 2002. Applications of high field strength elements to discriminate tectonic setting in VMS environments. Economic Geology, 97: 629-642.
  • 70. Schmidt, M.W., 1992. Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer. Contributions to Mineralogy and Petrology, 110: 304-310.
  • 71. Shand, S.J., 1943. Eruptive Rocks. Their Genesis, Composition, Classification, and Their Relation to Ore-Deposits with a Chapter on Meteori te. John Wiley & Son, New York.
  • 72. Shervais, J.W., 1982. Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth and Planetary Science Letters, 59: 10-118.
  • 73. Spandler, C., Hermann, J., Arculus, R.J., Mavrogenes, J., 2004. Geochemical heterogeneity and element mobility in deeply subducted oceanic crust; insights from high pressure mafic rocks from New Caledonia. Chemical Geology, 206: 21-42.
  • 74. Stern, R.J., 2002. Crustal evolution in the East African Orogen: a neodymium isotopic perspective. Journal of African Earth Sciences, 34: 109-117.
  • 75. Sun, S.-S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society Special Publications, 42: 313-345.
  • 76. Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: its Composition and Evolution. Blackwell, Oxford.
  • 77. Wilson, M., 1989. Igneous Petrogenesis. Unwin Hyman, London.
  • 78. Whitney, D.L., Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95: 185-87.
  • 79. Winchester, J.A., Floyd, P.A., 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20: 325-343.
  • 80. Wolf, M.B., Wyllie, P.J., 1994. Dehydration-melting of amphibolite at 10 kbar: the effects of temperature and time. Contributions to Mineralogy and Petrology, 115: 369-383.
  • 81. Wood, D.A.,1980. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth and Planetary Science Letters, 50: 11-30.
  • 82. Vernon, R.H., 2011. Microstructures of melt-bearing regional metamorphic rocks. GSA Memoir, 207: 1-11.
  • 83. Yang, Z.F., Zhou, J.H., 2013. Can we identify source lithology of basalt? Scientific Reports, 3: 1856; doi: 10.1038/srep01856.
  • 84. Zhao, G.C., Cawood, P.A., Wilde, S.A., Sun, M., 2002. Review of global 2.1-1.8 Ga orogens: implications for a pre-Rodinia supercontinent. Earth-Science Reviews, 59: 125-162.
  • 85. Zhao, G.C., Li, S.Z., Sun, M., Wilde, S.A., 2011. Assembly, accretion, and break-up of the Palaeo-Mesoproterozoic Columbia supercontinent: records in the North China Craton revisited. International Geology Review, 53: 1331-1356.
  • 86. Żelaźniewicz, A., Fanning, C.M., 2020. Neoarchean to Paleoproterozoic fragments in the Brunovistulia terrane, S Poland: a component of the Columbia Supercontinent? Geological Quarterly, 64(1): 120-129.
  • 87. Żelaźniewicz, A., Nowak, I., Bachliński, R., Larionov, A.N., Sergeev, S.A., 2005. Cadomian versus younger deformations in the basement of the Moravo-Silesian Variscides, East Sudetes, SW Poland: U-Pb SHRIMP and Rb-Sr age data. Geologia Sudetica, 37: 35-52.
  • 88. Żelaźniewicz, A., Buła, Z., Fanning, C.M., Seghedi, A., Żaba, J., 2009. More evidence on Neoproterozoic terranes in southern Poland and southeastern Romania. Geological Quarterly, 53 (1): 93-124.
  • 89. Żelaźniewicz, A., Oberc-Dziedzic, T., Slama, J., 2020. Baltica and the Cadomian orogen in the Ediacaran-Cambrian: a perspective from SE Poland. International Journal of Earth Sciences, 109: 1503-1528.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-174716df-e544-4bfe-869a-d9f28e145c06
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.