Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A Kelvin-Voigt model consisting of a spring and a dashpot in parallel was applied for the viscoelastic characterization of solid rocket propellants. Suitable values of spring constants and damping coefficients were employed by a least squares fit of the errors to generate creep curves using a Dynamic Mechanical Analyzer (DMA) for composite solid propellants. Three different composite propellant formulations based on HTPB/AP/Al having burning rates of 5 mm/s, 15 mm/s and 20 mm/s were tested under different stress levels varying from 0.1 MPa to 3 MPa and at different temperatures varying from 35 °C to 85 °C. Creep behavior with recovery was studied and analyzed to evaluate the viscoelastic properties. The change in spring constants, representing elastic deformation, was very small compared to the damping coefficients for the propellants studied. For a typical propellant formulation, when the stress level was increased, the spring and damping coefficient both increased significantly whereas for an increase in temperature, they remained nearly constant. However, the ratio E/η was observed to be constant and independent of stress level. It was also observed that the variation of E and η varied linearly with increase in stress whereas their ratio showed a logarithmic variation. A mathematical correlation was developed to evaluate the viscoelastic properties during creep of composite propellants.
Słowa kluczowe
Rocznik
Tom
Strony
742--756
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
- High Energy Materials Research Laboratory, Sutarwadi, 411021 Pune , India
autor
- High Energy Materials Research Laboratory, Sutarwadi, 411021 Pune , India
autor
- High Energy Materials Research Laboratory, Sutarwadi, 411021 Pune , India
autor
- High Energy Materials Research Laboratory, Sutarwadi, 411021 Pune , India
Bibliografia
- [1] Raman, L. Mechanical Properties of Solid Propellants. In: Propellant and Explosive Technology (Krishnan, S.; Chakravarthy, S. R.; Athithan, S. K., Eds.), Professional Development Short Term Course conducted at IIT (Madras), India, December 6 & 7, 1998, pp. 158-162, 206-215.
- [2] Gondouin, B. Structural Analysis of Propellant Grains. In: Solid Rocket Propulsion Technology (Davenas, A., Ed.), Pergamon Press, Oxford 1993, pp. 243-249; ISBN 0-08-040999-7.
- [3] Whitehouse, A. Structural Assessment of Solid Propellant Grains. Advisory Group for Aerospace Research and Development (AGARD), Report No. AGARDAR-350, France 1997; ISBN 92-836-1063-6.
- [4] Solid Propellant Grain Structural Integrity Analysis. NASA, Lewis Research Center (Design Criteria Office), Report No. SP-8073, Cleveland, Ohio-44135, USA 1973.
- [5] Cerri, S.; Bohn, A. M.; Menke, K.; Galfetti, L. Ageing Behaviour of HTPB Based Rocket Propellant Formulations. Cent. Eur. J. Energ. Mater. 2009, 6(2): 149-165.
- [6] Ferry, J. D. Viscoelastic Properties of Polymers. 3rd ed., John Wiley & Sons, New York 1980; ISBN 978-0-471-04894-7.
- [7] Ward, I. M.; Sweeney, J. An Introduction to The Mechanical Properties of Solid Polymers. 2nd ed., John Wiley & Sons, New York 2004, pp. 202-216; ISBN 978- 0471-49626-7.
- [8] Nielsen, L. E.; Landel, R. F. Dynamic Mechanical Properties. In: Mechanical Properties of Polymers and Composites. 2nd ed., 1994, pp. 136-137; ISBN 978-0- 824-78964-0.
- [9] Bicerano, J. Prediction of Polymer Properties. 3rd ed., Marcel Dekker, New York 1996; ISBN 978-0-824-70821-4.
- [10] Bihari, K. B.; Wani, S. V.; Rao, P. N. N.; Singh, P. P.; Bhattacharya, B. Determination of Activation Energy of Relaxation Events in Composite Solid Propellants by Dynamic Mechanical Analysis. Def. Sci. J. 2014, 64(2): 173-178.
- [11] Xu, F.; Aravas, N.; Sofronis, P. Constitutive Modeling of Solid Propellant Materials with Evolving Microstructural Damage. J. Mech. Phys. Solids 2008, 56: 2050-2073.
- [12] Zalewski, R.; Pyrz, M.; Wolszakiewicz, T. Modeling of Solid Propellants Viscoplastic Behaviour Using Evolutionary Algorithms. Cent. Eur. J. Energ. Mater. 2010, 7(4): 289-300.
- [13] Brzic, J. S., Jelisavac, N. L.; Galovic, R. J.; Simic, M. D.; Petkovic, Lj. J. Viscoelastic Properties of Hydroxyl-Terminated Poly(Butadiene)-Based Composite Rocket Propellants. Hem. Ind. 2014, 68(4): 435-443.
- [14] Shekhar, H.; Sahasrabudhe, A. D. Viscoelastic Modelling of Solid Rocket Propellants Using Maxwell Fluid Model. Def. Sci. J. 2010, 60(4): 423-427.
- [15] Shekhar, H.; Kankane, D. K. Viscoelastic Characterization of Different Solid Rocket Propellants Using the Maxwell Spring-Dashpot Model. Cent. Eur. J. Energ. Mater. 2012, 9(3): 189-199.
- [16] Shekhar, H.; Sahasrabudhe, A. D. Maxwell Fluid Model for Generation of Stress-Starin Curves of Viscoelastic Solid Rocket Propellants. Propellants Explos. Pyrotech. 2010, 35: 321-325.
- [17] Rzayeg, Y. A. Effect of Strain Rate on Tensile Fracture Behaviour of Viscoelastic Matrix (Polyester) and Fibre Reinforced Composites. Journal of Al-Anbar University for Pure Science 2007, 1(1): 44-54.
- [18] Lin, C.; Liu, J.; Huang, Z.; Gong, F.; Li, Y.; Pan, L.; Zhang, J.; Liu, S. Enhancement of Creep Properties of TATB-based Polymer Bonded Explosive Using Styrene Copolymer. Propellants Explos. Pyrotech. 2015, 40: 189-196.
- [19] Vani, V.; Mehilal; Jain, S.; Singh, P. P.; Bhattacharya, B. Studies on the Influence of Testing Parameters on Dynamic and Transit Properties of Composite Solid Rocket Propellants Using a Dynamic Mechanical Analyzer. J. Aerosp. Technol. Manag. 2012, 4(4): 443-452.
- [20] Lewandowski, R.; Chorazyczewski, B. Identification of the Parameters of the Kelvin-Voigt and the Maxwell Fractional Models, Used to Modeling of Viscoelastic Dampers. Comput. Struct. 2010, 88(1-2): 1-17.
- [21] Yang, J. L.; Zhang, Z.; Schlarb, A. K.; Friedrich, K. On the Characterization of Tensile Creep Resistance of Polyamide 66 Nanocomposites. Part I. Experimental Results and General Discussions. Polymer 2006, 47: 2791-2801.
- [22] Jia, Y.; Peng, K.; Gong, X.; Zhang, Z. Creep and Recovery of Polypropylene/Carbon Nanotube Composites. Int. J. Plasticity 2011, 27(8): 1239-1251.
- [23] Findley, N. W.; Lai, S. J.; Onaran, K. Creep and Relaxation of Nonlinear Viscoelastic Materials: with an Introduction to Linear Viscoelasticity. Dover Publications Inc., New York 1989; ISBN 978-0-486-66016-5.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-173719a4-b832-4d10-b5e1-b913f972ff09