PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of several methods for the data conversion and fitting of the Garofalo equation applied to an ultrahigh carbon steel

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: To determine the most suitable reduction data method and the optimal fitting method for the Garofalo equation. Two fitting methods were applied. The input data for this fitting are the sets of forming variables {T,σ,ε’} which have been obtained by using four different reduction methods. This procedure is applied to an ultrahigh carbon steel (UHCS). Design/methodology/approach: High temperature torsion tests have been carried out on the UHCS. A wide range of forming variables have been used. A numerical method has been implemented for the experimental data reduction. The fitting of the Garofalo equation has been carried out by means of two numerical methods. An integral method in stages, called RCR method, and a method based on Matlab algorithms called NLD. A comparative analysis of the parameters of the Garofalo equation has been conducted. Findings: The results show that the n and Q parameters are not dependent of the conversion method that has been used, Von Mises, Tresca or Eichinger. However, the α and A parameters seem to depend on the reduction method. Regarding the fitting, the RCR method is quick and efficient and its results, at the first stage, are close to the ones obtained by the NLD method. The evolution of the fitting parameters with strain for each conversion and fitting method has been determined. Research limitations/implications: The evolution of the parameters of the Garofalo equation are influenced by the adiabatic heating that occurs during the torsion testing. It is necessary a correct experimental design to obtain a suitable grid of data which allows an accurate determination of the strain rate sensitivity and the strain hardening coefficient. Practical implications: The fitting of the Garofalo equation for different strain values can provide information on the microscopic processes that take place during deformation. Originality/value: This work is a comparative study of the usual reduction methods and shows the utility of a method for the fitting of the Garofalo equation. This method is convergent, quick and accurate.
Rocznik
Strony
447--454
Opis fizyczny
Bibliogr. 15 poz., rys., tab.
Twórcy
  • Mathematics Department, Fac. Medio Ambiente, University Castilla-La Mancha, Av. Carlos III s/n, 45071, Toledo, Spain
autor
  • Mathematics Department, Fac. Medio Ambiente, University Castilla-La Mancha, Av. Carlos III s/n, 45071, Toledo, Spain
autor
  • Physical Metallurgy Department, C.E.N.I.M., C.S.I.C., Av. Gregorio del Amo 8, 28040, Madrid, Spain
autor
  • Mathematics Department, Fac. Medio Ambiente, University Castilla-La Mancha, Av. Carlos III s/n, 45071, Toledo, Spain
autor
  • Physical Metallurgy Department, C.E.N.I.M., C.S.I.C., Av. Gregorio del Amo 8, 28040, Madrid, Spain
Bibliografia
  • [1] A. Fernandez – Vicente, M.Carsí, F. Peñalba, F. Carreño, O.A. Ruano, Deformation behavior during hot torsion of an ultrahigh carbon steel containing 1,3 wt. % C, Zeitschrift für Metallkunde, 92 (2003) 8.
  • [2] J. Castellanos, I.Rieiro, J. Muñoz, M.Carsí, O.A. Ruano, Automation and analysis of data conversion for torsion tests. Different methods for the data reduction. IX National Conference of Materials, Vigo 2006, Spain. 454 Technical paper Volume 18 Issue 1-2 September–October 2006
  • [3] D. S. Fields Jr., W.A. Backofen, Proc. ASTM., 57 (1957) 1259.
  • [4] E. Lach, K. Pöhlandt, Testing the plastic behaviour of metals by torsion of solid and tubular specimens, Journal of Mechanical Working Technology, 9 (1984) 67.
  • [5] A. Eichinger, Handbuch der Werkstoffprüfung, 2 (1955) 15 Berlin.
  • [6] N. H. Polakowski, E.J. Ripling, Strength and structure of engineering materials, 383, 2996, New Jersey, Prentice-Hall
  • [7] G.R., Canova, et al., The Use of Torsion Testing to Assess Material Formability, Formability of Metallic Materials, 1982, 189.
  • [8] I. Rieiro, O.A. Ruano, M. Eddahli, M. Carsí, ”Integral method form initial values to obtain the best fit of the Garofalo’s creep equation”, 177-183, Journal of Materials Processing Technology, vol 78 (1-3) 1998
  • [9] I. Rieiro, Study and resolution of the phenomenological Garofalo equation for the steady state plastic flow of materials metallic polycrystallines. Determination of their application capacity and Physical foundations”. Ph. D. disertation, UCM – Madrid, Spain, 1997.
  • [10] I. Rieiro, M.Carsi, F.Peñalba, Computational Methods and Testing for Engineering Integrity, T.V. Duggan Computations Mechanics Publications, Southanton, UK, 1996, pp. 301.
  • [11] D.M. Botes, D.G. Watts: Nonlinear regression analysis and its applications, New York: John Wiley & Sons; 1963.
  • [12] A.R. Gallant. Univariate nonlinear regression. In Nonlinear Statistical Models, John Wiley & Sons, New York. 1986. [13] A.L. Peressini, F.E. Sullivan, Jr., J.J. Uhl, The Mathematics of Nonlinear Programming, Springer – Verlag, New York Inc, 1988.
  • [14] M.A. Branch, T.F. Coleman, Y. Li, A subspace, Interior, and Conjugate Gradient Method for Large-Scale Bound Constrained Minimization Problems, SIAM Journal on Scientific Computing, 21 (1999) 1
  • [15] R.H. Byrd, R.B. Schnabel, G.A. Shultz, Approximate Solution of the Trust Region Problem by minimization over Two-Dimensional Subspaces”, Mathematical Programming, 40 (1988) 247.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1734dfc9-9e16-47b0-b3b7-d0df6a16198c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.