PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study of the volume reduction impact on secondary photons emergent from flattening filter for high radiotherapy quality

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study aims to investigate and evaluate the secondary photons characterizations under flattening filter (FF) for high radiotherapy quality in terms of fluence, energy fluence, energy fluence distribution, spectral distribution and angular spread distribution of secondary photons, which are mainly coming from primary collimator originated in the whole Linac head. However, the flattening filter illuminates the photons of low energy. After this component, the secondary photons of low energy are coming from flattening filter and secondary collimators that contaminate the dosimetry for deep tumor treatment. Fluence profile, energy profile and angular spread of secondary photons decreased with FF volume reduction percent but energy distribution and spectral distribution kept almost constant with FF volume reduction. The FF volume reduction allows reducing the secondary photons emergent from FF in number and in energy and it permits to increase the radiotherapy efficiency by decreasing the photons contamination when the cancer is treating.
Rocznik
Strony
23--28
Opis fizyczny
Bibliogr. 17 poz., rys.
Twórcy
  • LISTA Laboratory, Physics Department, Faculty of Sciences Dhar El-Mahraz, University of Sidi Mohamed Ben Abdellah, Fez, Morocco
  • LISTA Laboratory, Physics Department, Faculty of Sciences Dhar El-Mahraz, University of Sidi Mohamed Ben Abdellah, Fez, Morocco
  • LISTA Laboratory, Physics Department, Faculty of Sciences Dhar El-Mahraz, University of Sidi Mohamed Ben Abdellah, Fez, Morocco
  • LISTA Laboratory, Physics Department, Faculty of Sciences Dhar El-Mahraz, University of Sidi Mohamed Ben Abdellah, Fez, Morocco
Bibliografia
  • [1] Bencheikh M, Maghnouj A, Tajmouati J. Photon beam softening coefficients evaluation for a 6 MV photon beam for an aluminum slab: Monte Carlo study using BEAMnrc code, DOSXYZnrc code and BEAMDP code. Moscow Univ Phys. 2017;72(3): 263-270.
  • [2] Bencheikh M, Maghnouj A, Tajmouati J. Photon Beam Softening Coefficient Determination with Slab Thickness in Small Filed Size: Monte Carlo Study. Phys Part Nuclei Lett (PEPAN). 2017;14(6):963-970.
  • [3] Bencheikh M, Maghnouj A, Tajmouati J. Energetic properties’ investigation of removing flattening filter at phantom surface: Monte Carlo study using BEAMnrc code, DOSXYZnrc code and BEAMDP code. Phys Part Nuclei Lett (PEPAN). 2017;14(6):953-962.
  • [4] Bencheikh M, Maghnouj A, Tajmouati J. Dosimetry Investigation and Evaluation for Removing Flattening Filter Configuration of Linac: Monte Carlo Study. Moscow Univ Phys. 2017;72(6):640-646.
  • [5] Bencheikh M, Maghnouj A, Tajmouati J. Relative Attenuation and Beam Softening Study with Flattening Filter Volume Reduction: Monte Carlo Study. Moscow Univ Phys. 2017;72(6):647-652.
  • [6] Bencheikh M, Maghnouj A, Tajmouati J. (2017), Study of Possibility to Reduce Flattening Filter Volume for Increasing Energetic Photons for High Radiotherapy Efficiency. Moscow Univ Phys. 2017;72(6):653-657.
  • [7] Bencheikh M, Maghnouj A, Tajmouati J. Study of photon beam dosimetry quality for removing flattening filter linac configuration. Ann Univ Craiova Physics AUC. 2017;27:50-60.
  • [8] Klein EE, Hanley J, Bayouth J, et al. AAPM Task Group 142 Report: Quality assurance of medical accelerators. Medical Physics. 2009;36(9):4197-4212.
  • [9] Nath R, Biggs PJ, Bova FJ, et al. AAPM code of practice for radiotherapy accelerators: report of AAPM Radiation Therapy Task Group No. 45. Med Phys. 1994;21(7):1093-1121.
  • [10] Didi A, Dadouch A, Bencheikh M, Jai O. Monte Carlo simulation of thermal neutron flux of americium–beryllium source used in neutron activation analysis. Moscow Univ Phys. 2017;72(5):460-464.
  • [11] Bencheikh M, Maghnouj A, Tajmouati J, et al. Validation of Monte Carlo simulation of linear accelerator using BEAMnrc code and DOSXYZnrc code. Phys Part Nuclei Lett (PEPAN). 2017;14(5):780-787,
  • [12] Rogers DWO, Walters B, Kawrakow I. BEAMnrc Users Manual. NRCC Report, Ottawa, 2013. pp 12-254.
  • [13] Rogers DWO, Kawrakow I, Seuntjens JP, et al. NRC User Codes for EGSnrc. NRCC Report, Ottawa, 2013. pp 6-83.
  • [14] Ma CM, Rogers DWO. BEAMDP Users Manual. National Research Council of Canada, NRCC Report, Ottawa. 2013. pp 3-24.
  • [15] Low DA, Dempsey JF. Evaluation of the gamma dose distribution comparison method. Med Phys. 2003;30(9):2455-2464.
  • [16] IAEA Technical Reports Series No.430. Commissioning and Quality Assurance of Computerized Planning Systems for Radiation Treatment of Cancer. International Atomic Energy Agency, Vienna. 2004.
  • [17] IAEA-TECDOC-1540. Specification and Acceptance Testing of Radiotherapy Treatment Planning Systems. International Atomic Energy Agency, Vienna. 2007
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1734d2e6-f1e9-4da2-b83f-77915dade2b4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.