Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
When D is a density matrix and A1, A2 are self-adjoint operators, then the standard variance is a 2 × 2 matrix: VarD(A1, A2)i,j := TrDAiAj − (TrDAi)(TrDAj) (1 ≤ i, j ≤ 2). The main result in this work is that there are projections Pk such that D = Σk λk Pk with 0 < λk and Σk λk = 1 and VarD (A1, A2) = Σk λk VarPk (A1, A2). In a previous paper only the A1 = A2 case was included and the relevance is motivated by the paper [8].
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
191--199
Opis fizyczny
Bibliogr. 10 poz.
Twórcy
autor
- Alfréd Rényi Institute of Mathematics, H-1364 Budapest, POB 127, Hungary
autor
- Alfréd Rényi Institute of Mathematics, H-1364 Budapest, POB 127, Hungary
Bibliografia
- [1] R. Bhatia, Positive Definite Matrices, Princeton University Press, Princeton 2007.
- [2] O. Gühne, P. Hyllus, O. Gittsovich, and J. Eisert, Covariance matrices and the separability problem, Phys. Rev. Lett. 99 (2007), 130504.
- [3] F. Hiai and D. Petz, Introduction to Matrix Analysis and Applications, to appear in Hindustan Book Agency.
- [4] P. D. Lax, Functional Analysis, Wiley, 2002.
- [5] D. Petz, Quantum Information Theory and Quantum Statistics, Springer, Heidelberg 2008.
- [6] D. Petz and G. Tóth, Matrix variances with projections, Acta Sci. Math. (Szeged) 78 (2012), pp. 683-688.
- [7] J. M. Steele, The Cauchy-Schwarz Master Class, Cambridge University Press, Cambridge 2004.
- [8] G. Tóth and D. Petz, Extremal properties of the variance and the quantum Fisher information, Phys. Rev. A 87 (2013), 032324.
- [9] A. Uhlmann, Roofs and convexity, Entropy 12 (2010), pp. 1799-1832.
- [10] S. Yu, Quantum Fisher information as the convex roof of variance, http://arxiv.org/abs/1302.5311.
Uwagi
This paper is dedicated to Rajendra Bhatia on the occasion of his 60th birthday
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-17347ae1-26a8-4cbe-861c-e6de0dffc663