PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Testing of Air-Cooling Efficiency of the Underside of a Turning Tool Carbide Insert in EN-GJL 250 Cast Iron Turning Operations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article shows the results of research on the effectiveness of operation of an original tool air cooling system in cutting. A case of turning EN-GJL 250 cast iron with TH10 tungsten carbide cutting inserts without protective coatings was selected for testing. The paper gives constructional details of the tested tool cooling system and discusses the principle of its operation. The research carried out has shown that this way of cooling the cutting insert causes a significant decrease in temperature in all sub-areas of the cutting zone. In addition, air cooling has been proven to significantly reduce cutting tool wear and slightly improve the roughness of the machined surface. The results obtained showed that the proposed method of cooling can be successfully used in the treatment of grey cast iron. In the future, it may serve as a basis for the construction of a professional cooling system for industrial applications.
Twórcy
  • Faculty of Mechanical Engineering, Opole University of Technology, ul. Mikołajczyka 5, 45-271 Opole, Poland
  • Faculty of Mechanical Engineering, Opole University of Technology, ul. Mikołajczyka 5, 45-271 Opole, Poland
autor
  • Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, al. Powstańców Warszawy 12, Rzeszów 35-959, Poland
  • Lviv Polytechnic National University, 12, Bandera st., 79013 Lviv, Ukraine
Bibliografia
  • 1. Grzesik W. Advanced Machining Processes of Metallic Materials: Theory, Modelling, and Applications, Elsevier; 2017.
  • 2. Shaw M.C. Metal cutting principles, Oxford University Press; 2004.
  • 3. Davim J.P. (Ed.). Metal Cutting Technologies: Progress and Current Trends, Walter de Gruyter GmbH & Co KG; 2016.
  • 4. Dixit U.S., Sarma A.K., Davim J.P. Environmentally Friendly Machining, Springer; 2012.
  • 5. Quan Y., Mai Q. Investigation of the cooling effect of heat pipe-embedded cutter in dry machining with different thermal conductivities of cutter/workpiece materials and different cutting parameters. International Journal of Advanced Manufacturing Technology. 2015; 79(5): 1161–1169. https://doi.org/10.1007/s00170-015-6889-5.
  • 6. Zhu L., Peng S.S., Yin C.L., Jen T.C., Cheng X., Yen Y.H. Cutting temperature, tool wear, and tool life in heat-pipe-assisted end-milling operations. International Journal of Advanced Manufacturing Technology. 2014; 72(5-8): 995-1007. https://doi.org/10.1007 /s00170-014-5699-5.
  • 7. Liang L., Quan Y. Investigation of heat partition in dry turning assisted by heat pipe cooling. International Journal of Advanced Manufacturing Technology. 2012; 66(9-12): 1931–1941. https://doi.org/10.1007/s00170-012-4471-y.
  • 8. Liang L., Quan Y., Zhiyong K. Investigation of tool-chip interface temperature in dry turning assisted by heat pipe cooling. International Journal of Advanced Manufacturing Technology. 2011; 54(1): 35-43. https://doi.org/10.1007/s00170-010-2926-6.
  • 9. Kondej D., Gawęda E. Metals in Dust Fractions Emitted at Mechanical Workstations. International Journal of Occupational Safety and Ergonomics. 2012; 18(4): 453–460. https://doi.org/10.1080/10803548.2012.11076952.
  • 10. PN EN ISO 945-1: Cast iron microstructure - Part 1: Classification of graphite precipitates on the basis of visual analysis, 09-20-2019, Polish Committee for Standardization.
  • 11. EN 156:2012 Founding Grey cast iron, Polish Committee for Standardization, 2021, Warsaw, Poland.
  • 12. Ankener W., Uebel J., Basten S., Smaga M., Kirsch B., Seewig J., Aurich J.C., Beck T. Influence of different cooling strategies during hard turning of AISI 52100 – part II: characterization of the surface and near surface microstructure morphology. Procedia CIRP. 2020; 87: 119–124. https://doi.org/10.1016/j.procir.2020.02.094.
  • 13. Dhanasekaran P.S., Kalla D.K., Asmatulu R. Human safety problems in industrial machining of composite materials. Composites Manufacturing 2011 Conference and Exhibits. Vol. TP11PUB12. 2011; 1–8.
  • 14. Chuchala D., Dobrzynski M., Pimenov D.Y., Orlowski K.A., Krolczyk G. Surface roughness evaluation in thin EN AW-6086-T6 alloy plates after face milling process with different strategies. Materials. 2021; 14(11): 3036. https://doi.org/10.3390/ma14113036.
  • 15. Tanabe I., Yamagami Y., Hoshino H. Development of a New High-pressure Cooling System for Machining of Difficult-to-Machine Materials. Journal of Machine Engineering. 2020; 20(1): 82–97.
  • https://doi.org/10.36897/jme/117776
  • 16. Airao J., Nirala C.K., Bertolini R., Krolczykc G.M., Khanna N. Sustainable cooling strategies to reduce tool wear, power consumption and surface roughness during ultrasonic assisted turning of Ti-6Al-4V. Tribology International. 2022; 169: 107494.https://doi.org/10.1016/j.triboint.2022.107494.
  • 17. Nowakowski Ł., Miko E. The analysis of factors impacting the geometrical structure of machined surfaces. Mechanik. 2015; 88(8-9CD2): 11–18. https://doi.org/10.17814/ mechanik.2015.8-9.406.
  • 18. The website of the EN-GJL-250 cast iron manufacturer. http://www.iron-foundry.com/en-gjl-250-cast-iron-gg25.html (Access on 07/05/2022).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-172fee12-fecc-4e69-a765-020aa70fb63b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.