PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Grain refinement, microhardness distribution, strain hardening behaviour and mechanical proprieties of RD-ECAPed AA 1050

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study aims to investigate the evolution of mechanical and microstructural characteristics of the 1050 aluminium alloy processed by Rotary Die Equal Channel Angular Pressing (RD-ECAP). The RD-ECAPed specimens were analysed after each pass using optical microscopy, quasi-static compression test and microhardness measurements. The results revealed a reduction in grain size from 29 _m before the RD-ECAP process to a minimum value of 2 _m at the second pass, corresponding to the maximum value of compressive yield strength, reaching 184MPa. Furthermore, there was an increase in hardness from 30 Hv to 63 Hv with a homogeneous distribution along the longitudinal surface, especially in the initial four RD-ECAP passes. Additionally, the appearance of a 45_ shear plane was observed at the last fifth pass, coinciding with the region of maximum microhardness.
Rocznik
Strony
647--672
Opis fizyczny
Bibliogr. 50 poz., rys., tab., wykr.
Twórcy
autor
  • Laboratoire Génie des Matériaux, École Militaire Polytechnique, BP17 Bordj El-Bahri, 16046 Algiers, Algeria
autor
Bibliografia
  • 1. E.O. Hall, The deformation and ageing of mild steel, Proceedings of the Physical Society- Section B, 64, 9, 747–753, 1951, doi:10.1088/0370-1301/64/9/303.
  • 2. N.J. Petch, The cleavage strength of polycrystals, Journal of the Iron and Steel Institute, 174, 25–28, 1953.
  • 3. T.G. Langdon, Twenty-five years of ultrafine-grained materials: achieving exceptional properties through grain refinement, Acta Materialia, 61, 19, 7035–7059, 2013, doi: 10.1016/j.actamat.2013.08.018.
  • 4. G. Faraji, H.S. Kim, H.T. Kashi, Severe Plastic Deformation: Methods, Processing and Properties, Elsevier, 2018, doi: 10.1016/C2016-0-05256-7.
  • 5. M. Sheik Hassan, S. Sharma, B. Kumar, A review of severe plastic deformation, International Refereed Journal of Engineering and Science (IRJES), 6, 7, 66–85, 2017.
  • 6. R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zechetbauer, Y.T. Zhu, Producing bulk ultrafine-grained materials by severe plastic deformation, JOM (TMS) (Minerals, Metals & Materials Society), 58, 4, 33–39, 2006, doi: 10.1007/s11837-006-0213-7.
  • 7. R. Valiev, Nanostructuring of metals by severe plastic deformation for advanced properties, Nature Materials, 3, 8, 511–516, 2004, doi: 10.1038/nmat1180.
  • 8. C. Wang, F. Li, B. Chen, Z. Yuan, H. Lu, Severe plastic deformation techniques for bulk ultrafine-grained materials, Rare Metal Materials and Engineering, 41, 6, 941–946, 2012, doi: 10.1016/S1875-5372(12)60049-6.
  • 9. Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai, Novel ultra-high straining process for bulk materials-Development of the accumulative roll bonding (ARB) process, Acta Materialia, 47, 579–583, 1999, doi: 10.1016/S1359-6454(98)00365-6.
  • 10. A. Halimi, A. Boudiaf, L. Hemmouche, A. Medjahed, D.E. Tria, A. Henniche, M.E.A. Djeghlal, T. Baudin, Quasi-static and dynamic characterization of ultrafinegrained 2017A-T4 aluminium alloy processed by accumulative roll bonding, Archives of Mechanics, 73, 4, 339–363, 2021, doi: 10.24423/aom.3795.
  • 11. P.S. Sahoo, M.M. Mahapatra, P.R. Vundavilli, C. Pandey, Effects of working temperature on microstructure and hardness of Ti-6Al-4V alloy subjected to asymmetrical rolling, Journal of Materials Engineering and Performance, 2023, doi: 10.1007/s11665-023-08076-0.
  • 12. A.P. Zhilyaev, T.G. Langdon, Using high-pressure torsion for metal processing: Fundamentals and applications, Progress in Materials Science, 53, 893–979, 2008, doi: 10.1016/j.pmatsci.2008.03.002.
  • 13. A. Zhilyaev, G. Nurislamova, B.-K. Kim, M. Baró, J. Szpunar, T. Langdon, Experimental parameters influencing grain refinement and microstructural evolution during high-pressure torsion, Acta Materialia, 51, 3, 753–765, 2003, doi: 10.1016/S1359-6454(02)00466-4.
  • 14. M. Furukawa, Z. Horita, M. Nemoto, T.G. Langdon, Review: processing of metals by equal-channel angular pressing, Journal of Materials Science, 36, 2835–2843, 2001, doi: 10.1023/A:1017932417043.
  • 15. R.Z. Valiev, T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Progress in Materials Science, 51, 881–981, 2006, doi: 10.1016/j.pmatsci.2006.02.003.
  • 16. V.M. Segal, Equal channel angular extrusion: from macromechanics to structure formation, Materials Science and Engineering A, 271, 322–333, 1999, doi: 10.1016/S0921-5093(99)00248-8.
  • 17. E. El-Danaf, M. Kawasaki, M. El-Rayes, M. Baig, J.A. Mohammed, T.G. Langdon, Mechanical properties and microstructure evolution in an aluminium 6082 alloy processed by high-pressure torsion, Journal of Materials Science, 49, 19, 6597–6607, 2014, doi: 10.1007/s10853-014-8266-4.
  • 18. P. Vishnu, R. Raj Mohan, E. Krishna Sangeethaa, S. Raghuraman, R. Venkatraman, A review on processing of aluminium and its alloys through Equal Channel Angular Pressing die, Materials Today: Proceedings, 21, 212–222, 2019, doi: 10.1016/j.matpr.2019.04.223.
  • 19. L. Cui, S. Shao, H. Wang, G. Zhang, Z. Zhao, C. Zhao, Review: recent advances in the equal channel angular pressing of metallic materials, Processes, 10, 2181, 2022, doi: 10.3390/pr10112181.
  • 20. P.S. Sahoo, A. Meher, M.M Mahapatra, R.V. Pandu, Analysis of mechanical and microstructural characteristics of plunger-assisted ECAP strengthened Ti-6Al-4V alloy sheets, Archives of Civil and Mechanical Engineering, 23, 194, 2023, doi: 10.1007/s43452-023-00742-3.
  • 21. Z. Horita, M. Furukawa, M. Nemoto, T.G. Langdon, Development of fine grained structures using severe plastic deformation, Materials Science and Technology, 16, 11–12, 1239–1245, 2000, doi: 10.1179/026708300101507091.
  • 22. H. Sato, S. El Hadad, O. Sitdikov, Y. Watanabe, Effects of processing routes on wear property of Al-Al3Ti alloys severely deformed by ECAP, Materials Science Forum, 584-586, 971–976, 2008, doi: 10.4028/www.scientific.net/MSF.584-586.971.
  • 23. K. Oh-Ishi, Z. Horita, M. Furukawa, M. Nemoto, T.G. Langdon, Optimizing the rotation conditions for grain refinement in equal-channel angular pressing, Metallurgical and Materials Transactions A, 29, 7, 2011–2013, 1998, doi: 10.1007/s11661-998-0027-z.
  • 24. S. Akramov, I. Kim, M.G. Lee, B.H. Park, Sheet formability of AA 1050 Al alloy sheet by equal channel angular pressing of route C type, Solid State Phenomena, 116-117, 324–327, 2006, doi: 10.4028/www.scientific.net/SSP.116-117.324.
  • 25. M.C.V. Vega, R.E. Bolmaro, M. Ferrante, V.L. Sordi, A.M. Kliauga, The influence of deformation path on strain characteristics of AA1050 aluminium processed by equal-channel angular pressing followed by rolling, Materials Science and Engineering: A, 646, 154–162, 2015, doi: 10.1016/j.msea.2015.07.083.
  • 26. S.R. Kumar, K. Gudimetla, P. Venkatachalam, B. Ravisankar, K. Jayasankar, Microstructural and mechanical properties of Al 7075 alloy processed by equal channel angular pressing, Materials Science and Engineering: A, 533, 50–54, 2012, doi: 10.1016/j.msea.2011.11.031.
  • 27. P. Venkatachalam, S.R. Kumar, B. Ravisankar, V.T. Paul, M. Vijayalakshmi, Effect of processing routes on microstructure and mechanical properties of 2014 Al alloy processed by equal channel angular pressing, Transactions of Nonferrous Metals Society of China, 20, 10, 1822–1828, 2010, doi: 10.1016/S1003-6326(09)60380-0.
  • 28. T. Kovaríka, J. Zrnikb, M. Cieslard, Grain refinement in aluminium alloy AlMgSi1 during ECAP at room temperature, Health and Environmental Research Online (HERO), 19, 121–126, 2009.
  • 29. J. Mao, S. Kang, J. Park, Grain refinement, thermal stability and tensile properties of 2024 aluminium alloy after equal-channel angular pressing, Journal of Materials Processing Technology, 159, 3, 314–320, 2005, doi: 10.1016/j.jmatprotec.2004.05.020.
  • 30. G. Prashanth, Ultra-grain refinement and optimization of aluminium material properties using equal channel angular pressing (ECAP) in deform software, International Journal of Scientific Research and Review, 8, 6, 145, 2019.
  • 31. M. Howeyze, H. Arabi, A. Eivani, H. Jafarian, Strengthening of AA5052 aluminium alloy by equal channel angular pressing followed by softening at room temperature, Materials Science and Engineering: A, 720, 160–168, 2018, doi: 10.1016/j.msea.2018.02.054.
  • 32. M. Goodarzy, H. Arabi, M. Boutorabi, S. Seyedein, S.H. Najafabadi, The effects of room temperature ECAP and subsequent aging on mechanical properties of 2024 al alloy, Journal of alloys and compounds, 585, 753–759, 2014, doi: 10.1016/j.jallcom.2013.09.202.
  • 33. A. Yamashita, D. Yamaguchi, Z. Horita, T.G. Langdon, Influence of pressing temperature on microstructural development in equal-channel angular pressing, Materials Science and Engineering: A, 287, 1, 100–106, 2000, doi: 10.1016/S0921-5093(00)00836-4.
  • 34. I. Mazurina, T. Sakai, H. Miura, O. Sitdikov, R. Kaibyshev, Effect of deformation temperature on microstructure evolution in aluminium alloy 2219 during hot ECAP, Materials Science and Engineering: A, 486, 1-2, 662–671, 2008, doi: 10.1016/j.msea.2007.09.070.
  • 35. L. Su, G. Deng, V. Luzin, H. Wang, Z. Wang, H. Yu, H. Li, A.K. Tieu, Effect of cryogenic temperature equal channel angular pressing on microstructure, bulk texture and tensile properties of AA1050, Materials Science and Engineering A, 780, 139190, 2020, doi: 10.1016/j.msea.2020.139190.
  • 36. M. Shaeri, M. Shaeri, M. Ebrahimi, M. Salehi, S. Seyyedein, Effect of ECAP temperature on microstructure and mechanical properties of Al–Zn–Mg–Cu alloy, Progress in Natural Science: Materials International, 26, 2, 182–191, 2016, doi: 10.1016/j.pnsc.2016.03.003.
  • 37. P. Koprowski, R. Bogucki, M. Bieda, J. Kawałko, K. Sztwiertnia, Thermal stability of AA1050 aluminium alloy after equal channel angular pressing, Archives of Metallurgy and Materials, 62, 2, 777–786, 2017, doi: 10.1515/amm-2017-0116.
  • 38. S.L. Semiatin, P.B. Berbon, T.G. Langdon, Deformation heating and its effect on grain size evolution during equal channel angular extrusion, Scripta Materialia, 44, 135–140, 2001, doi: 10.1016/S1359-6462(00)00565-0.
  • 39. T. Camalet, A. Rusinek, R. Bernier, M. Karon, R. Massion, G. Voyiadjis, M. Adamiak, Effect of severe plastic deformation by 120 deg ECAP or shock impact on 6061 aluminium alloy at high strain rates, Journal of Engineering Materials and Technology, 140, 4, 2018, doi: 10.1115/1.4039690.
  • 40. P. B. Berbon, M. Furukawa, Z. Horita, M. Nemoto, T.G. Langdon, Influence of pressing speed on microstructural development in equal-channel angular pressing, Metallurgical and Materials Transactions A, 30A, 1989–1997, 1999, doi: 10.1007/s11661-999-0009-9.
  • 41. O. Abioye, P. Atanda, G. Osinkolu, A. Abioye, I. Olumor, O. Odunlami, S. Afolalu, Influence of equal channel angular extrusion on the tensile behaviour of aluminium 6063 alloy, Procedia Manufacturing, 35, 1337–1343, 2019, doi: 10.1016/j.promfg.2019.05.020.
  • 42. T.Q. Phan, L.E. Levine, I-F. Lee, R. Xu , J.Z. Tischler, Y. Huang, T.G. Langdon, M.E. Kassner, Synchrotron X-ray microbeam diffraction measurements of full elastic long range internal strain and stress tensors in commercial-purity aluminium processed by multiple passes of equal-channel angular pressing, Acta Materialia, 112, 231–241, 2016, doi: 10.1016/j.actamat.2016.04.035.
  • 43. F. Djavanroodi, B. Omranpour, M. Ebrahimi, M. Sedighi, Designing of ECAP parameters based on strain distribution uniformity, Progress in Natural Science: Materials International, 22, 5, 452–460, 2012, doi: 10.1016/j.pnsc.2012.08.001.
  • 44. H.S. Kim, M.H. Seo, S.I. Hong, On the die corner gap formation in equal channel angular pressing, Materials Science and Engineering: A, 291, 1-2, 86–90, 2000, doi: 10.1016/S0921-5093(00)00970-9.
  • 45. Y. Nishida, H. Arima, J.C. Kim, T. Ando, Development of the ECAP with a rotary die and its application to AC4C aluminum alloy, Journal of Japan Institute of Light Metals, 50-12, 655–659, 2000, doi: 10.2464/jilm.50.655.
  • 46. A. Watazua, I. Shigematsub, M. Hakamadac, K. Suzukid, X.S. Huange, N. Saito, Rotary-die equal channel angular pressing method for Light metals, Materials Science Forum, 638-642, 1614–1617, 2010, doi: 10.4028/www.scientific.net/MSF.638-642.1614.
  • 47. R. Kaibyshev, S. Malopheyev, V. Kulitskiy, M. Gazizov, The role of deformation banding in grain refinement under ECAP, Materials Science Forum, 783, 2641–2646, 2014, doi: 10.4028/www.scientific.net/MSF.783-786.2641.
  • 48. A. Kobaissy, G. Ayoub, W. Nasim, J. Malik, I. Karaman, M. Shehadeh, Modeling of the ECAP induced strain hardening behavior in FCC metals, Metallurgical and Materials Transactions A, 51A, 5453–5474, 2020, doi: 10.1007/s11661-020-05971-2.
  • 49. J.A. Muñoz Bolaños, O.F. Higuera Cobos, J.M. Cabrera Marrero, Strain hardening behavior of ARMCO iron processed by ECAP, Materials Science and Engineering, 63, 012143, 2014, doi: 10.1088/1757-899X/63/1/012143.
  • 50. W.J. Kim, C.S. Chung, D.S. Ma, S.I. Hong, H.K. Kim, Optimization of strength and ductility of 2024 Al by equal channel angular pressing (ECAP) and post-ECAP aging, Scripta Materialia, 49, 333–338, 2003, doi: 10.1016/S1359-6462(03)00260-4.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-17259776-5611-41a0-a1f9-d5f61378b319
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.